

WASSERHAUSHALTSUNTERSUCHUNGEN IM RAHMEN DES FORSTLICHEN UMWELT-MONITORINGS UND BEI WALDBAULICHEN VERSUCHEN IN RHEINLAND-PFALZ

Mitteilungen aus der Forschungsanstalt für Waldökologie und Forstwirtschaft Rheinland-Pfalz Nr. 71/12

Impressum

Herausgeber:

Zentralstelle der Forstverwaltung Forschungsanstalt für Waldökologie und Forstwirtschaft Rheinland-Pfalz (FAWF) Hauptstr. 16 D-67705 Trippstadt Telefon 06306 911-0, Telefax 06306 911 200 zdf.fawf@wald-rlp.de www.fawf.wald-rlp.de

Verantwortlich:

Der Leiter der Forschungsanstalt für Waldökologie und Forstwirtschaft Rheinland-Pfalz

Dokumentation:

Mitteilung FAWF, Trippstadt Nr.71/12, 289 Seiten

Gestaltung, Grafik und Satz

FAWF Rheinland-Pfalz

ISSN 1610-7705 Mitteilungen aus der Forschungsanstalt für Waldökologie und Forstwirtschaft Rheinland-Pfalz, Nr. 71/12

nur als download (Langfassung) http://www.fawf.wald-rlp.de/index.php?id=2601

Alle Rechte, insbesondere das Recht der Vervielfältigung und Verbreitung sowie der Übersetzung vorbehalten.

WASSERHAUSHALTSUNTERSUCHUNGEN IM RAHMEN DES FORSTLICHEN UMWELT-MONITORINGS UND BEI WALDBAULICHEN VERSUCHEN IN RHEINLAND-PFALZ

S. Karl¹; J. Block²; G. Schüler²; B. Schultze¹; J. Scherzer¹

¹⁾ UDATA, Neustadt/Weinstr.
 ²⁾ FAWF Rheinland-Pfalz, Trippstadt

Zentralstelle der Forstverwaltung

Forschungsanstalt für Waldökologie und Forstwirtschaft, Rheinland-Pfalz, Trippstadt 2012

Inhaltsverzeichnis

				Seite
1	Einl	eitun	g und Zielsetzung	5
2	Sim	ulatio	on des Wasserhaushalts von Waldökosystemen	5
	2.1	Waru	m Simulationsmodelle?	5
	2.2	Mode	ellauswahl	9
	2.3	Mode	ellbeschreibung	10
		2.3.1	Ermittlung von Wasserhaushaltsbilanzen	10
		2.3.2	Interzeption	10
		2.3.3	Transpiration, Wurzelwasseraufnahme	11
		2.3.4	Evaporation	11
		2.3.5	Wassertransport im Boden	11
			2.3.5.1 pF-Kurven	12
			2.3.5.2 Hydraulische Leitfähigkeiten	13
		2.3.6	Bodenwärmehaushalt	14
		2.3.7	Anfangs- und Randbedingungen, treibende Variablen	14
		2.3.8	Räumliche und zeitliche Diskretisierung	15
	2.4	Kalib	rierung und Validierung	15
	2.5	Plaus	ibilitätsprüfung der meteorologischen und bodenhydrologischen Daten	17
	2.6	Ausw	rertegrößen: Definition und Vorgehen	18
2				20
3	Wa	sserna	aushalt der Untersuchungsstandorte	20
	3.1	wass	ernausnalt der Level II-Flachen des forstlichen Umweltmonitorings	20
		3.I.I	Konzept des forstlichen Umweltmonitorings	20
		3.I.Z	Adenau Level II (Ficheralthestand mit Bushanunterstand)	21
		3.1.3 21.4	Merzalben (Eichenallbestand mit Buchenunterstand)	29 41
		2.1.4 2.1 5	Internet (Fight Conternet Provide Anternet	41
		216	Johanniskieuz (Kierennaltbestand mit Buchenzwischen- und -unterstand)	49 57
		317	Neuhäusel-Bims (Buche)	57 66
		31.7	Neuhäusel-Ouarzit (Buche)	80
		319	Leisel (Fichte)	90
		3110	Schaidt (Fiche)	102
	3.2	Wass	erhausbalt der Untersuchungsflächen des Kompensationsversuchs	
		3.2.1	Konzept des Kompensationsversuchs	
		3.2.2	Hochspever (Kiefer mit Buche und Strobe)	
		3.2.3	Birkenfeld (Fichte)	122
		3.2.4	Adenau (Fichte)	129
	3.3	Wass	erhaushalt der Untersuchungsflächen des Sukzessionsversuchs	
		3.3.1	Konzept des Sukzessionsversuchs	136
		3.3.2	Gauchsberg	137
		3.3.3	Kirchberg	180
	3.4	Wass	erhaushalt der Untersuchungsflächen des Kahllagenversuchs	224

	3.4.1 Konzept des Kahllagenversuchs	224
	3.4.2 Kisselbach, Laubach	225
	3.4.3 Kisselbach III	226
	3.4.4 Kisselbach IX	, 234
	3.4.5 Laubach VII	. 241
4	Diskussion	. 250
	4.1 Einflussfaktoren auf den Wasserhaushalt	.250
	4.2 Trocken- und Sauerstoffstress	.256
	4.3 Diskussion der eingesetzten Methoden	.257
5	Zusammenfassung	258
6	Summary	259
7	Abkürzungsverzeichnis und Glossar	264
8	Literaturverzeichnis	267
9	Abbildungsverzeichnis	. 272
10) Tabellenverzeichnis	277

1 Einleitung und Zielsetzung

Der Bodenwasserhaushalt steuert das Baumwachstum auf zweierlei Weise: Zum einen bestimmt er unmittelbar die Wasser- und Sauerstoffverfügbarkeit im Wurzelraum und zum anderen ist er die Basis für den Stofftransport und damit die Nährstoffversorgung der Pflanzen. Ausführliche Kenntnisse über den Wasserhaushalt von Waldökosystemen sind daher eine entscheidende Grundlage für die Bewertung von Waldfunktionen sowie für die Einschätzung von Risikofaktoren für das Ökosystem und die forstwirtschaftliche Nutzung. Eine Einbindung von Wasserhaushaltsuntersuchungen in das forstliche Umweltmonitoring und in waldbauliche Versuche, wie sie von der FAWF in Rheinland-Pfalz umfangreich betrieben werden, bietet zudem die Möglichkeit, sich frühzeitig mit den möglichen Folgen des Klimawandels für die Waldökosysteme zu befassen.

Ziel des vorliegenden Berichts ist die umfassende Zusammenstellung aller Informationen, welche in den vergangenen Jahren durch Wasserhaushaltssimulationen im Rahmen des forstlichen Umweltmonitorings und bei Waldbauversuchen in Rheinland-Pfalz gewonnen wurden. Dies umfasst eine Beschreibung der Versuchsflächen, des Versuchsdesigns und der Messtechnik sowie die Untersuchungsergebnisse hinsichtlich Klima und Wasserhaushalt.

2 Simulation des Wasserhaushalts von Waldökosystemen

2.1 Warum Simulationsmodelle?

Zur Untersuchung des Wasserhaushalts stehen unterschiedliche Methoden zur Verfügung: Freilanduntersuchungen zum Bodenwasserhaushalt stehen grundsätzlich vor der Schwierigkeit, dass die direkte Messung von Bilanzkomponenten wie Evapotranspiration und Tiefensickerung ohne Störung des Systems unmöglich ist. Die vielfach praktizierte Methode der Erfassung von Wasserflüssen in Lysimeteranlagen (Scнröder 1975, KATZUR UND LIEBNER 1995, MÜLLER 1996) ist technisch aufwändig und weist zahlreiche ungelöste Probleme auf, insbesondere durch Störungen der Lagerungsverhältnisse beim Einbau und Porendiskontinuitäten am unteren Rand. Dies kann zu Fehlern in der Erfassung der Sickerwassermengen führen (Baumgartner und Liebscher 1990).

Basierend auf dem Konzept von ULRICH (1981) bildete sich daher ein neuer Ansatz zur Bilanzierung von Wasser- und Stoffflüssen in Ökosystemen heraus: In mehreren Bodentiefen werden zeitlich hochaufgelöste Messungen von Bodensaugspannung, Wassergehalt und Bodentemperatur durchgeführt. Anschließend an die Parametrisierung der Materialfunktionen (pF-WG, $K_{(\Theta)}$) können die Datensätze dann in prozessorientierten numerischen Simulationsmodellen verrechnet und auf Grundlage von meteorologischen Daten die Wasserbewegung im Ökosystem ermittelt werden. Einen Überblick über gebräuchliche Modelle für Fragestellungen in der Forsthydrologie geben z.B. TIKTAK und VAN GRINSVEN (1995).

Mit Hilfe des Ansatzes nach Ulrich (1981) wurden bereits eine ganze Reihe von Fragestellungen in der Waldökosystemforschung erfolgreich bearbeitet (z. B. Ulrich 1989, Schaaf 1992, Zimmermann 1995, Lischeid 1995, Scherzer 2001, Alavi et al. 2001, Gustafsson et al. 2004, Christiansen et al. 2006, JANSSON et al. 2007). Wichtige Einflussfaktoren auf die Tiefensickerung sind Niederschlag, Bestandesalter und Baumart (Tabelle 1). Wie z.B. die umfangreichen Untersuchungen von Beständen mit Pinus sylvestris L. aus dem Nordostdeutschen Tiefland (Müller 1996, Schaaf et al. 1995, Scнеrzer 2001) belegen, bestehen allerdings selbst bei vergleichbaren Klimabedingungen, Bestandesstrukturen und Untersuchungszeiträumen erhebliche Unterschiede in den Tiefensickerungen. Auch bei den Beständen mit Fagus sylvatica, welche von Scherzer et al. (unveröff.) und Scherzer (unveröff.) untersucht wurden, führt ein vergleichbarer Niederschlagsinput zu sehr unterschiedlichen Tiefensickerungen.

Tabelle 1

Tiefensickerung, nach Baumart und Bestandesalter geordnet. Deep percolation, sorted according to the tree species and age.

Pinus sylvestris L. (Waldkiefer)

Autor(en)	Art der Studie	Region	Zeitraum	Bestan- desalter [a]	Nieder- schlag [mm/a]	Tiefen- sickerung [mm/a]	Tiefen- sickerung [% d. NS]
Müller (1996)	Lysimeter	Uckermark	1993 - 95	8	664	214	32
Müller (1996)	Lysimeter	Uckermark	1993 - 95	14	675	101	15
Scherzer (2001)	Simulation (COUPMODEL)	Niederlausitz	1996-98	22	645	33	5
Müller (1996)	Lysimeter	Uckermark	1993 - 95	22	636	0	0
Scherzer (2001)	Simulation (COUPMODEL)	Niederlausitz	1996-98	34	638	108	17
Sснаағ et al. (1995)	Simulation (COUPMODEL)	Torgau (Elbe)	1994	45	794	292	37
Müller (1996)	Lysimeter	Uckermark	1993 - 95	50	636	18	3
Реск und Mayer (1996)	Literaturstudie	k. A.	k.A.	60 - 75	571	ca. 74 ^{*)}	13 ^{*)}
Sснаағ et al. (1995)	Simulation (COUPMODEL)	Bitterfeld	1994	61	744	272	37
Scherzer (2001)	Simulation (COUPMODEL)	Niederlausitz	1996-98	62	638	111	17
Sснаағ et al. (1995)	Simulation (COUPMODEL)	Gr. Stechlinsee	1994	65	718	311	43
Müller (1996)	Lysimeter	Uckermark	1993 - 95	76	636	65	10
Scнultze und Scherzer (unveröff.)	Simulation (COUPMODEL)	Niederlausitz	1951-09	51-92 ²⁾	642	136	21
Scherzer (unveröff.)	Simulation (COUPMODEL)	Laußnitz (b. Dresden)	1997 - 98	81-100	855	233	27
Scherzer (unveröff.)	Simulation (COUPMODEL)	Uckermark	1996 - 97	81-100	583	173	30
Scнerzer und Scнultze (unveröff.)	Simulation (COUPMODEL)	Elbsandstein- gebirge	1997-09	94-113 ²)	741	158	21

^{*)} eigene Berechnung ²⁾ Bezugsjahr 2010

Fagus sylvatica (Rotbuche)

Autor(en)	Art der Studie	Region	Zeitraum	Bestan- desalter [a]	Nieder- schlag [mm/a]	Tiefen- sickerung [mm/a]	Tiefen- sickerung [% d. NS]
Müller (1996)	Lysimeter	Uckermark	1993 - 95	8	664	317	48
Müller (1996)	Lysimeter	Uckermark	1993 - 95	14	675	200	30
Müller (1996)	Lysimeter	Uckermark	1993 - 95	22	635	134	21
Scнerzer und Schultze (unveröff.)	Simulation (COUPMODEL)	Elbsand- steingebirge	1997-09	ca. 65	968	323 ¹⁾	33 ¹⁾
Scнerzer et al. (unveröff.)	Simulation (COUPMODEL)	Schleswig- Holstein	1996-98	81-100	599	257	43
Реск und Mayer (1996)	Literaturstudie	k. A.	k.A.	100	697	ca. 181 ^{*)}	26 ^{*)}
Scherzer (unveröff.)	Simulation (COUPMODEL)	Nördl. Thürin- gen (Mittl. Muschelkalk)	1996-98	120 (?)	645	133	21
Scнultze und Scherzer (unveröff.)	Simulation (COUPMODEL)	NRW	2002-09	124²)	886	343	39
Müller (1996)	Lysimeter	Uckermark	1993 - 95	135	670	150	22
*) eigene Berechnung	¹⁾ Summe a	us lateralem un	d vertikalem	Austrag	2)	Bezugsjahr	2010.

Quercus (Eiche)

Autor(en)	Art der Studie	Region	Zeitraum	Bestan- desalter [a]	Nieder- schlag [mm/a]	Tiefen- sickerung [mm/a]	Tiefen- sickerung [% d. NS]
Scнerzer und Scнultze (unveröff.)	Simulation (COUPMODEL)	Sächs. Löss- hügelland	1997 – 06	ca. 60	734	203 ¹⁾	28 ¹⁾
Scнultze und Scherzer (unveröff.)	Simulation (COUPMODEL)	Niederlausitz	1951-09	36-85²)	645	191	30
Scherzer und Schultze (unveröff.)	Simulation (COUPMODEL)	Elbsandstein- gebirge	1997-09	94-113²)	740	218 ¹⁾	29
Scнultze und Scherzer (unveröff.)	Simulation (COUPMODEL)	NRW	2004-09	79-133²)	866	94	11

¹⁾ Summe aus lateralem und vertikalem Abfluss

²⁾ Bezugsjahr 2010.

Picea abies (Gemeine Fichte)

Autor(en)	Art der Studie	Region	Zeitraum	Bestan- desalter [a]	Nieder- schlag [mm/a]	Tiefen- sickerung [mm/a]	Tiefen- sickerung [% d. NS]
Zimmermann (1995)	Simulation (WHNSIM)	Schwarz- wald	1988 - 94	40-60	1861	1391	75
Реск und Mayer (1996)	Literaturstudie	k. A.	k.A.	60-75	702	ca. 63 *)	9
Scherzer (unveröff.)	Simulation (COUPMODEL)	Thüringer Gebirge	1995 - 98	81-100	1236	987	71
Scнerzer und Scнultze (unveröff.)	Simulation (COUPMODEL)	West- erzgebirge	1997 – 06	ca. 80	1351	721	53
Scнultze und Scherzer (unveröff.)	Simulation (COUPMODEL)	NRW	2003-09	86	1513	826	55
Scнerzer und Scнultze (unveröff.)	Simulation (COUPMODEL)	Ost- erzgebirge	2001 - 06	ca. 80 -100	1160	549	47
Scнerzer und Scнultze (unveröff.)	Simulation (COUPMODEL)	Oberlausitzer Bergland	1997 – 06	ca. 100	846	163	19
Scнerzer und Scнultze (unveröff.)	Simulation (COUPMODEL)	Elbsandstein- gebirge	1997 – 06	ca. 100	892	309	35
Ескеrsтеn et al. (1995)	Simulation (COUPMODEL)	Solling	1968 - 91	120	1115	427	38
Scнerzer et al. (unveröff.)	Simulation (COUPMODEL)	Solling	1995 - 97	120	1061	504	48
Scнerzer und Scнultze (unveröff.)	Simulation (COUPMODEL)	Ost- erzgebirge	1997 – 06	ca. 120	1070	349	33
Scнerzer und Scнultze (unveröff.)	Simulation (COUPMODEL)	Elbsandstein- gebirge	1997-09	74-123 ²⁾	1069	433	41

*) eigene Berechnung

²⁾ Bezugsjahr 2010

k.A.: keine Angabe

2.2 Modellauswahl

Es existieren zahlreiche Modelle zur Simulation des ökosystemaren Wasserhaushalts. In den über Internet recherchierbaren Datenbanken der Universität Kassel (http://ecobas.org/www-server/ index.html) oder der US-amerikanischen Umweltbehörde EPA (http://www.epa.gov/ada/csmos/index.html) werden beispielsweise mehrere hundert Ökosystemmodelle aufgelistet, hierunter eine große Anzahl von Wasserhaushaltsmodellen. Eine ausführlichere Übersicht über Quellen von Simulationsmodellen gibt z.B. LEGOVIC (1997). Vielfach liegt allerdings keine umfassende Dokumentation vor (TIKTAK und VAN GRINSVEN 1995), und die Modelle sind somit im Wesentlichen nur durch den Entwickler selbst nutzbar (LANDSBERG et al. 1991). Eine Übersicht über häufig verwendete Wasserhaushaltsmodelle in der Forsthydrologie geben z.B auch die Zusammenstellung von HÖRMANN und Schmidt (1995) oder die Modellvergleiche von Tiktak und van Grinsven (1995) sowie Hörmann und Meesenburg (2000).

Vorliegende Modelle unterscheiden sich zunächst grundsätzlich in der Implementierung des Bodenwasserhaushalts: Bei der einfachsten Variante, den sogenannten Speichermodellen, besteht der Boden aus einer oder mehreren linear gekoppelten Speicherzellen. Diesen Ansatz verfolgen z. B. FOREST-BCG (RUNNING UND COUGHLAN 1988, RUNNING und Gower 1991) oder SIMPEL (Hör-MANN 1997). Stärker prozessorientierte Modelle beschreiben die Wasserbewegung im Boden in der Regel durch die sogenannte Richards-Gleichung (Gleichung 7). Zu dieser Gruppe gehören z. B. BROOK90 (Federer und Lash 1978, Federer 1995), HYDRUS (VOGEL et al. 1996), COUP-MODEL (JANSSON UND HALLDIN 1979, JANSSON 1996) und WHNSIM (Huwe und van der Ploeg 1988, Huwe 1990). Die Lösung des numerischen Gleichungssystems erfolgt hier meist durch ein Finite-Differenzen-Verfahren. Die z.B. bei HYD-RUS verwendete Finite-Elemente-Lösung zeichnet sich demgegenüber durch höhere Rechengeschwindigkeiten aus, die Massenbilanztreue ist allerdings nicht vollständig gewährleistet und die Gefahr numerischer Instabilität ist wesentlich größer. Unterschiede bestehen auch bei der Berechnung der Evapotranspiration: So erfordert HYDRUS eine externe Ermittlung der potenziellen Evapotranspiration, während die anderen hier aufgelisteten Modelle unterschiedlich formulierte Ansätze nach PENMAN-MONTEITH (Gleichung 4) verwenden.

Die Interzeptionsberechnung erfolgt vielfach mit Hilfe eines physikalisch basierten Speichermodells (z. B. BROOK90, SIMPEL, COUPMODEL). WHNSIM verwendet dagegen eine empirische Beziehung nach HOYNINGEN-HUENE (1983), und HYDRUS verfügt über kein eigenes Interzeptionsmodul. HYDRUS, WHNSIM und COUPMODEL ermöglichen darüber hinaus auch eine simultane Simulation des Wasser- und Wärmehaushalts von Böden.

Für die Zielsetzung der FAWF wurde schließlich das Modell COUPMODEL (früher: SOIL) bevorzugt. Dieses verfügt über Module für alle relevanten Teilprozesse. Insbesondere die Einbeziehung des Bodenwärmehaushalts erschien von Vorteil, da an deutschen Mittelgebirgsstandorten in strengen Wintern durchaus mehrmonatiger Bodenfrost auftreten kann und somit Rückkopplungen auf den Bodenwasserhaushalt zu erwarten sind. Gegenüber WHNSIM zeichnet sich COUPMODEL durch seine explizitere Konzipierung auch für forstliche Standorte, eine weitaus größere Zahl an Referenzen (z. В. Јониsson et al. 1987, Gärdenäs und Jansson 1995, Weisdorfer 1999, ECKERSTEN et al. 1995, ALAVI et al. 2001, GUSTAFSSON et al. 2004, CHRISTIANSEN et al. 2006, JANSSON et al. 2007) und eine komfortablere Benutzeroberfläche aus.

Zum besseren Verständnis der weiteren Ausführungen soll in den folgenden Abschnitten kurz auf die Implementierung der wichtigsten Teilprozesse im Modell COUPMODEL eingegangen werden. Eine ausführlichere Beschreibung der gesamten Modellstruktur findet sich unter http://www2.lwr. kth.se/Vara%20Datorprogram/CoupModel/ oder bei JANSSON und KARLBERG (2010).

2.3 Modellbeschreibung

2.3.1 Ermittlung von Wasserhaushaltsbilanzen

Grundlage für die Berechnung ist die sogenannte Wasserbilanzgleichung (Gleichung 1, BAUMGART-NER und LIEBSCHER 1990, verändert), in welcher sich die Speicheränderung aus der Differenz zwischen Niederschlag einerseits und Evapotranspiration und Abflüssen andererseits ergibt.

$$P = E_1 + E_F + E_T + R_O + R_1 + R_T + \Delta S$$

mit:

- P: Niederschlag [LZ⁻¹]
- E: Evapotranspiration [LZ⁻¹], Indices: I = Interzeption, E = Evaporation, T = Transpiration
- R: Abfluss [LZ⁻¹], Indices: O = Oberflächenabfluss, L = lateraler Abfluss/Interflow, T = Tiefensickerung
- ΔS : Speicheränderung [LZ⁻¹]

Werden lediglich eindimensionale Wasserflüsse betrachtet, so kann der unterirdische Abfluss, R_u, mit der Tiefensickerung oder der Grundwasserneubildung gleich gesetzt werden. Diese Begriffe werden im Folgenden synonym verwendet. Bei einem komplexeren Ansatz, welcher auch Stauwasserbeeinflussung berücksichtigt, muss zusätzlich zwischen vertikal-ungesättigtem und lateralgesättigtem Abfluss unterschieden werden.

An den Untersuchungsstandorten der FAWF lagen zur Berechnung der Wasserhaushaltsbilanzen Messwerte des Niederschlags vor. Die Interzeption konnte hier sowohl über den Vergleich von Freiland- und Bestandesniederschlägen (Messwerte) als auch durch Modellsimulationen ermittelt werden (Abschnitt 2.3.2). Die Berechnung der Transpiration (Abschnitt 2.3.3) und der Evaporation (Abschnitt 2.3.4) erfolgte mit Hilfe der Penman-Monteith-Gleichung (Gleichung 4). Bodenwasserflüsse und als Resultat davon die Tiefensickerung wurden auf Grundlage der Richards-Gleichung (Gleichung 8) simuliert (Abschnitt 2.3.5). Die Kalibrierung des lateralen Abflusses erfolgte über Gleichung 9. Oberflächenabflüsse können sich im Modell in geringem Ausmaß durch eine verringerte Infiltrationskapazität während Frostphasen oder bei Wassersättigung durch Stauwasser ergeben. Die mit Gleichung 1 ermittelte Speicheränderung wurde durch einen Vergleich der Bodenwasservorräte zu Beginn und Ende eines Bilanzierungszeitraums überprüft.

2.3.2 Interzeption

In COUPMODEL wird der Anteil der Niederschlagsrate, welcher an den oberirdischen Pflanzenteilen interzipiert wird (P.), berechnet zu

$$P_{i} = \frac{S_{imax} - S_{i(t-1)}}{\Delta t}$$
 Gleichung 2

mit:

Gleichung 1

P_i: interzipierter Niederschlag [LZ⁻¹]

S_{imax}: maximale Speicherfähigkeit der Vegetation [L]

S_{i(t-1)}: gespeichertes Wasser, das vom letzten Berechnungsintervall mit der Länge Δt übrig ist [L]

Die maximale Interzeptionsspeicherfähigkeit S_{imax} wird als Funktion des Blattflächenindexes (LAI) berechnet:

$$S_{imax} = S_{im}LAI$$

mit:

S_{im}: Interzeptionsspeicherkapazität je Einheit des LAI [L] LAI: Blattflächenindex [-]

Für die bestandesspezifische Interzeptionsspeicherkapazität je Einheit des LAI, S_{im}, wird in COUPMO-DEL im Unterschied zum Vorläufermodell SOIL separat für flüssige und schneeförmige Niederschläge parametrisiert. Für Flüssigniederschläge wird meist ein Bereich zwischen 0,2 und 0,8 mm (z. B. Dıскın-SON 1984, JANSSON UND KARLBERG 2010, WEIHE 1974, SCHÜLER 1998) angegeben, die Schneeinterzeption liegt mit 0,1 bis 4 mm (z.B. JANSSON und KARLBERG 2010) oft wesentlich höher. S_{im} kann auf Grundlage von Messdaten des Freiland- und Bestandesniederschlags, von Interzeptionsmessungen oder von Erfahrungswerten kalibriert werden. Die Höhe der Evaporation des interzipierten Niederschlags wurde mit der Penman-Monteith-Gleichung (Gleichung 4) unter Annahme eines Oberflächenwiderstandes r = 5 s/m berechnet.

2.3.3 Transpiration, Wurzelwasseraufnahme

Die potenzielle Transpiration wird über die sogenannte Penman-Monteith-Kombinationsgleichung (Gleichung 4, MONTEITH 1965) berechnet. Der Widerstand r_s, welcher in guter Näherung mit dem Kehrwert der maximalen stomatären Leitfähigkeit (CondMax) gleichgesetzt werden kann, diente analog zur Vorgehensweise bei CIENCIALA et al. (1994) oder ECKERSTEN et al. (1995) hierbei als Fittingparameter des ungestressten Wasserentzugs:

$$\lambda E_{E} = \frac{\Delta (R_{n} - B) + p_{L}c_{p}(e_{s} - e)/r_{a}}{\Delta + y(r_{s} + r_{a})/r_{a}}$$
 Gleichung 4

mit:

- λ : spezifische Verdampfungswärme von Wasser [LZ⁻²] (= 2,45*10⁶ J kg⁻¹ bei 20°C)
- E_z: verdunstendes Wasservolumen pro Fläche [LZ⁻¹]
- R: Nettostrahlung [MZ⁻¹]
- B: Boden-Wärmeflussdichte [MZ⁻¹]
- ∆: Steigung der Kurve des Sättigungsdampfdrucks [ML⁻¹Z⁻²T⁻¹]
- p_{1} : Dichte der Luft [ML⁻³]
- y: Psychrometer-Konstante [ML⁻¹Z⁻²T⁻¹]
- c_p : Wärmekapazität von Luft bei konstantem Druck [L²Z⁻²T⁻¹] (= 1010 J kg⁻¹K⁻¹ für Standardbedingungen)
- e: Dampfdruck der Luft [ML⁻¹Z⁻²]
- e_s: Sättigungsdampfdruck der Luft bei der jeweiligen Temperatur [ML⁻¹Z⁻²]
- *r*_a: aerodynamischer Widerstand [L⁻¹Z], Funktion des Windprofils
- r_s: Bestandes-, Oberflächen- oder stomatärer Widerstand [L⁻¹Z]

Die aktuelle Transpiration wird aus der potenziellen Transpiration unter Berücksichtigung der Wasserverfügbarkeit in den durchwurzelten Kompartimenten ermittelt. Hierfür wird ein physiologisch begründetes Pflanzenmodell eingesetzt. Reduktionsfunktionen werden sowohl bei sehr niedrigen Saugspannungen (Annahme für die hier untersuchten Standorte: ≤ 1 hPa) aufgrund von Sauerstoffmangel als auch bei zu hohen Saugspannungen (Annahme für die hier untersuchten Standorte: ≥ 300 hPa) aufgrund von Trockenstress wirksam. Darüber hinaus führen auch niedrige Bodentemperaturen durch eine Reduktion der Leitfähigkeit zwischen Wurzeloberfläche und Xylem zu einer Einschränkung der Transpiration. Ausschlaggebend für den Wasserentzug in verschiedenen Bodentiefen ist die Wurzelverteilung.

2.3.4 Evaporation

Die Höhe der Evaporation von der Bodenoberfläche wurde ebenfalls mittels der Penman-Monteith-Gleichung (Gleichung 4) unter Einbeziehung des Bodenwärmeflusses an der Bodenoberfläche berechnet. Der Durchtrittswiderstand an der Bodenoberfläche, r_s, ergibt sich über eine empirische Gleichung als Funktion der Saugspannung im obersten Kompartiment und der Massenbilanz an der Oberfläche. Als Grenzsaugspannung, ab welcher der Durchtrittswiderstand zu steigen beginnt, wurde 100 hPa angenommen. Der Sensitivitätsparameter wurde auf den Standardwert (10⁻²s) eingestellt.

Die vom Modell berechnete Evaporation konnte im Rahmen des vorliegenden Projektes nicht durch unabhängige Messungen validiert werden. Daher unterliegt diese Bilanzkomponente insgesamt einer gewissen Unsicherheit. Eine Kalibrierung der Evaporation erfolgte aufgrund des Verlaufs der simulierten und gemessenen Bodenwassergehalte bzw. Bodensaugspannungen in der obersten Untersuchungstiefe. Hier gibt es allerdings Abgrenzungsschwierigkeiten zwischen Evaporation und Transpiration, da in dieser Bodentiefe erfahrungsgemäß auch ein hoher transpirativer Wasserentzug stattfindet. Bei einer guten Übereinstimmung zwischen gemessenen und simulierten Wassergehalten kann jedoch davon ausgegangen werden, dass die Summe von Evaporation und Transpiration plausibel ist.

2.3.5 Wassertransport im Boden

Zur prozessorientierten Beschreibung des Wassertransports im Boden ist das sogenannte Potenzialkonzept allgemein anerkannt (HILLEL 1980, FEDDES et al. 1988, HARTGE und HORN 1999). Die grundlegende Gleichung hierfür fand bereits im Jahr 1856 der französische Ingenieur DARCY. Er drückte einen auf eine definierte Querschnittsfläche bezogenen laminaren und stationären Wasserfluss als Folge eines hydraulischen Potenzialgradienten aus.

$$J = -K \cdot grad\psi$$

mit:

J:	Flussdichte [LZ ⁻¹]
Ψ_{h} :	hydraulisches Potenzial, $\psi_{h} = \psi_{m} + \psi_{g}$
ψ_{m} :	Matrixpotenzial [L]
Ψ _g :	Gravitationspotenzial [L]
$grad\psi_h$:	Gradient des hydraulischen Potenzials in
	allen drei Raumrichtungen [-]
K:	hydraulische Leitfähigkeit [LZ-1]

Unter Einbeziehung der Kontinuitätsgleichung (Gleichung 6), welche besagt, dass die zeitliche Änderung des volumetrischen Wassergehalts (θ) gleich der räumlichen Änderung der volumetrischen Wasserflussdichte (/) über einen infinitesimal kleinen Zeit- und Volumenabschnitt ist, und eines Quellen- und Senkenterms erweiterte RICHARDS (1931) das Darcy-Gesetz auf instationäre Verhältnisse:

mit:

 $\begin{array}{ll} \theta : & \mbox{Wassergehalt} \left[L^{3}L^{-3}\right] \\ S_{(x_{V,Z,L})} : & \mbox{Senkenterm in den drei Raumrichtungen} \left[Z^{-1}\right] \end{array}$

Diese Gleichung lässt sich numerisch lösen, wenn die Beziehungen zwischen Wassergehalt und Saugspannung (Abschnitt 2.3.5.1) sowie zwischen hydraulischer Leitfähigkeit und Wassergehalt (Abschnitt 2.3.5.2) bekannt sind. Zusätzlich müssen geeignete Anfangs- und Randbedingungen (Abschnitt 2.3.7) definiert werden. Für Standorte mit hohen hydraulischen Leitfähigkeiten, an denen gesättigte Wasserverhältnisse kaum auftreten, wird Gleichung 7 in der Regel auf die eindimensionale Form reduziert, da hier der Sickerwasserfluss in der Regel vertikal erfolgt (ВRAHMER 1990).

$$\frac{\partial \theta}{\partial t} = \frac{\partial}{\partial_z} \left[K_{(\theta)} \frac{\partial \psi_m}{\partial_z} + 1 \right] - S_{\theta}$$

Gleichung 8

mit:

S_(z,t): Senkenterm eindimensional [Z⁻¹]

In COUPMODEL wird der Wassertransport mit einer eindimensionalen Richards-Gleichung (Gleichung 8) berechnet, welche mit Hilfe eines expliziten Finite-Differenzen-Näherungsverfahrens gelöst wird. Zur Lösung des Gleichungssystems müssen insbesondere die Beziehungen zwischen Wassergehalt und Saugspannung (pF-Kurve) sowie die hydraulische Leitfähigkeitsfunktion ($K_{(0)}$), die sogenannten Materialfunktionen, bestimmt werden (Abschnitt 2.3.5.1 und 2.3.5.2).

An grund- bzw. stauwasserbeeinflussten Standorten kann zusätzlich auch ein lateraler Abfluss (R_L) in Abhängigkeit vom Grund- bzw. Stauwasserstand angenommen werden. Dieser wird in COUPMODEL durch die empirische Rezessionsgleichung erster Ordnung ermittelt.

$$R_{L} = q_{1} \frac{\max(0, z_{1} - z_{sat})}{z1} + q_{2} \frac{\max(0, z_{2} - z_{sat})}{z2}$$

Gleichung 9

- q₁: maximaler Spitzenabfluss
- z_1 : Bodentiefe, ab welcher q_1 zu sinken beginnt
- z_{sat}: Grundwasserstand
- q₂: maximaler Basisabfluss
- z_2 : Bodentiefe, ab welcher q_2 zu sinken beginnt

Der laterale Abfluss wird hierbei jeweils dem obersten gesättigten Bodenkompartiment zugeordnet. Die Parameter q_1, z_1, q_2 und z_2 werden durch ein Fitting-Verfahren ermittelt.

2.3.5.1 pF-Kurven

Die Parametrisierung der pF-Kurve folgt in COUP-MODEL wahlweise einem modifizierten Ansatz von Brooks und Corey (1964) oder dem Konzept von van Genuchten (1980).

BROOKS und COREY (1964) schlugen für den intermediären Bereich der Retentionskurve eine einparametrige exponentielle Beziehung zwischen Saugspannung und Wassergehalt des Bodens vor:

$$S_{e} = \left(\frac{\Psi}{\Psi_{a}}\right)^{-\lambda}$$

Gleichung 10

mit:

*S*_e: effektive Sättigung [-]

 ψ : Saugspannung [L]

 ψ_{a} : Lufteintrittspunkt [L]

λ: Porengrößenverteilung [-]

Die effektive Sättigung S_{e} wird hierbei definiert als

$$S_{e} = \frac{\theta - \theta_{r}}{\theta_{c} - \theta_{r}}$$

Gleichung 11

mit:

θ: Wassergehalt

 θ_r : residualer Wassergehalt

θ_c: Porosität

Außerhalb dieses Bereichs, also bei Wassergehalten, die höher sind als der sogenannte Lufteintrittspunkt (ψ_a), wird ein linearer Zusammenhang zwischen Saugspannung und Wassergehalt angenommen. Unterhalb des residualen Wassergehalts, bei dem die Kontinuität wassergefüllter Poren bereits weitgehend verloren ist, gilt eine logarithmisch-lineare Beziehung.

Bei der Parametrisierung nach VAN GENUCHTEN (1980) wird der gesamte Saugspannungsbereich durch eine einzige dreiparametrige Funktion abgedeckt:

$S_{\rm e} = \frac{1}{(1+\alpha\psi)^n}$

Gleichung 12

mit α , *n* und *m* als empirischen Parametern. Mit diesem Modell kann erfahrungsgemäß eine größere Bandbreite von Retentionskurven angepasst werden. Die simultane Optimierung der drei Parameter ist allerdings nicht mehr trivial, sodass zur Parametrisierung der Retentionsfunktion eine spezielle Software (RETC, VAN GENUCHTEN et al. 1991) entwickelt wurde. Der van-Genuchten-Parameter α entspricht in etwa dem Kehrwert des Lufteintrittspunkts (ψ_a) in der Gleichung nach BROOKS und COREY (1964). Für die Bestimmung der Parameter *n* und *m* wurde die übliche Restriktion *m* = 1 - 1/*n* verwendet.

2.3.5.2 Hydraulische Leitfähigkeiten

Die hydraulische Leitfähigkeitsfunktion, $K_{(\theta)}$, folgt dem Kapillarbündelansatz nach MUALEM (1976). Dieser lässt sich unter Verwendung der Beziehungen von BROOKS und COREY (1964) (vgl. Gleichung 10) formulieren als

$$K_{(\theta)} = K_{\text{matrix}} \left(\frac{\Psi_{\alpha}}{\Psi} \right)^{2 + (2+n)\lambda}$$

Gleichung 13

mit:

- K₍₀₎: hydraulische Leitfähigkeit als Funktion des Wassergehalts [LZ⁻¹]
- K_{matrix}: gesättigte hydraulische Leitfähigkeit der Bodenmatrix [LZ⁻¹]

n: Tortuositätsfaktor (empirisch) [-].

Zur Bestimmung der $K_{(0)}$ - Funktion von Böden wurde bereits eine Reihe von Methoden dokumentiert. Einen Überblick gibt z. B. KLUTE (1986). Neben in-situ- (z. B. GREEN et al. 1986) und Standard-Labormethoden (HARTGE und HORN 1992) gibt es auch Modelle zur Vorhersage der Leitfähigkeitsfunktion aus der pF-Kurve (z. B. VAN GENUCHTEN et al. 1991, DURNER 1991), aus der Korngrößenverteilung (z. B. RAWLS und BRAKENSIEK 1989) oder aus inverser Simulation von Laborsäulenversuchen (SCHULTZE 1998). In zahlreichen Untersuchungen (z. B. JÄSCHE und SCHEIBKE 1993, SCHÄFER et al. 1994, LISCHEID 1995) konnte bereits nachgewiesen werden, dass zwischen hydraulischen Leitfähigkeiten, welche im Labor bzw. im Freiland ermittelt wurden. erhebliche Differenzen bestehen. Ein wesentliches ungeklärtes Problem der Leitfähigkeitsmessung im Labor ist das Auftreten von Randeffekten bei der üblichen Probenahme in Stechzylindern. Da die Probenahme unter erheblicher Krafteinwirkung geschehen muss, werden häufig Risse am Rand oder innerhalb der Probe erzeugt, welche zu einer starken Überschätzung der hydraulischen Leitfähigkeit führen können. Messungen unter Laborbedingungen sind außerdem grundsätzlich destruktiver Natur und sollten aufgrund der räumlichen Variabilität von Transportparametern (WARRICK et al. 1986, WILSON et al. 1989) kritisch hinterfragt werden.

Neben der Wasserleitfähigkeit der Bodenmatrix

 (K_{matrix}) lässt sich in COUPMODEL auch eine separate Wasserleitfähigkeit der Makroporen (K_{makro}) berücksichtigen.

2.3.6 Bodenwärmehaushalt

In COUPMODEL wird der Bodenwärmehaushalt durch das Gesetz nach FOURIER und die Energieerhaltsgleichung abgebildet. Die Parametrisierung der thermischen Leitfähigkeiten sowohl des ungefrorenen als auch des gefrorenen Bodens geschieht analog zu KERSTEN (1949).

Der Bodenwärmehaushalt ist insofern von Interesse, als Wechselwirkungen des Wasserhaushalts sowohl mit dem diffusiven als auch dem konvektiven Wärmetransport im Boden berücksichtigt werden können. Darüber hinaus ist die hydraulische Leitfähigkeit bei Bodenfrost stark reduziert. Das wichtigste Kriterium bei der Kalibrierung des Modells war demzufolge eine möglichst realitätsgetreue Wiedergabe der Bodentemperatur im Bereich des Gefrierpunkts.

2.3.7 Anfangs- und Randbedingungen, treibende Variablen

Zur eindeutigen Lösung der Richards-Gleichung ist die Definition von Anfangs- und Randbedingungen erforderlich. Als Anfangsbedingungen sind insbesondere Tiefenprofile der Bodensaugspannung und der Bodentemperatur erforderlich. Die obere Randbedingung wird durch die Tagessummen der Niederschläge sowie die Evapotranspiration gebildet.

Die untere Randbedingung für den Wasserhaushalt wurde als Randbedingung 2. Art ("Neumann-Randbedingung") in Form eines Einheitsgradienten spezifiziert. Dies bedeutet, dass am unteren Rand der Gradient des hydraulischen Potenzials gleich Null ist und der Wasserfluss lediglich über Gravitationskräfte bestimmt wird. Der Einheitsgradient bietet gegenüber der festen Vorgabe einer Zustandsvariablen (Randbedingung 1. Art, "Dirichlet-Randbedingung") den Vorteil, systemunabhängig zu sein. Dadurch sind auch Simulationen für Zeiträume möglich, für die keine Daten im Boden erhoben werden, sondern lediglich meteorologische Daten vorliegen. Voraussetzung hierfür ist allerdings, dass die räumliche Diskretisierung des Bodenprofils ausreichend tief in den

Boden reicht, um eine Beeinflussung des unteren Rands durch Wurzelwasseraufnahme oder kapillaren Aufstieg auszuschließen.

An Stauwasser beeinflussten Standorten wurde als seitliche Randbedingung "no flow" angenommen, solange der Boden ungesättigt ist. Bei Sättigung wurde ein lateraler Abfluss nach Gleichung 9 generiert. Als Equilibrierungsphase für das Modell dienten jeweils 2 Monate vor dem Beginn des ersten Bilanzierungszeitraums. Als Anfangsbedingungen wurden für die Bodensaugspannung im gesamten Profil 63 hPa bzw. 32 hPa angenommen. Bei den Bodentemperaturen wurde ein typisches herbstliches Temperaturprofil vorgegeben: Die Temperatur steigt ausgehend von 5,0 °C bzw. 5,6 °C an der Bodenoberfläche an und erreicht in 90 cm Tiefe die Jahresmitteltemperatur am jeweiligen Standort. Unterhalb von 90 cm Tiefe wird die initiale Temperatur als konstant angenommen.

Als treibende Variablen dienten die an den Wetterstationen der FAWF erfassten Klimaparameter: relative Luftfeuchte, Lufttemperatur, Windgeschwindigkeit, Globalstrahlung und Niederschlag. Auf Freiflächen gemessene Niederschläge wurden mit einem aerodynamischen Korrekturfaktor von 1,05 (Messhöhe: 1 m) versehen. Der bei Jansson (1996) für 1,5 m Messhöhe angegebene Wert beträgt 1,07. Bestandesniederschläge wurden nicht weiter korrigiert, da hier in guter Näherung Windstille angenommen werden kann.

Neben dem hier verwendeten Verfahren zur Windkorrektur werden in der Literatur allerdings auch Konzepte beschrieben, welche von einem weitaus größeren Messfehler beim Freilandniederschlag ausgehen: So würde die Windkorrektur nach RICHTER (1995) zu einer Erhöhung der Jahresniederschläge zwischen 7,3 und 18,2 % führen.

Die Bestandeshöhe geht sowohl bei der Referenzhöhe der meteorologischen Daten als auch bei der Berechnung der Evapotranspiration in das Modell ein. Die Ermittlung einer Referenzhöhe ist erforderlich, da sich die meteorologischen Sensoren in der Regel auf einer dem Bestand benachbarten Freifläche und nicht oberhalb der Baumkronen befinden. Sie wird ermittelt, indem zur Höhe der Sensoren über dem Boden die mittlere Baumhöhe addiert wird.

2.3.8 Räumliche und zeitliche Diskretisierung

Zur Realisierung des zu Beginn des vorherigen Abschnitts diskutierten Skalenübergangs ist die Vereinbarung einer räumlichen und zeitlichen Diskretisierung erforderlich. Die Mächtigkeit der räumlichen Kompartimente sollte insbesondere in Bereichen, in denen eine hohe zeitliche Dynamik der Wasserflüsse herrscht, d.h. nahe der Bodenoberfläche, möglichst gering sein. Eine gleichzeitige Berücksichtigung der Horizontierung des Bodenprofils ist wichtig, da den einzelnen numerischen Kompartimenten definierte hydraulische Eigenschaften zugewiesen werden, die in der Regel horizontweise ermittelt werden. Darüber hinaus sollte gewährleistet werden, dass die Sensorik, mit Hilfe derer die Kalibrierung und Validierung des Modells erfolgen soll, jeweils möglichst repräsentative Messwerte für ein bestimmtes Kompartiment liefert. Die Messtiefe sollte sich also möglichst nicht mit einer Kompartimentgrenze überschneiden. Der Zeitschritt für die Ein- und Ausgabe der Modellvariablen betrug 1 Tag. Die partiellen Differentialgleichungen für den Wassertransport im Boden wurden mit einer Mindestzahl von 128 Iterationen pro Tag gelöst. Die Anzahl der Iterationen wurde bei Starkregenereignissen und Bodenfrost verdoppelt, um numerische Instabilität zu vermeiden.

2.4 Kalibrierung und Validierung

Unter Kalibrierung versteht man die systematische Veränderung von Eingabeparametern, um eine möglichst gute Übereinstimmung zwischen einer unabhängigen Messgröße und einer simulierten Zielfunktion zu erreichen. Validierung bezeichnet eine Überprüfung der Zielfunktion durch unabhängige Messdaten, welche nicht in den Kalibrierprozess einbezogen waren.

Die Notwendigkeit einer Kalibrierung von Modellen ergibt sich aus dem Umstand, dass zwischen dem realen System und dem Modell sowohl ein zeitlicher als auch räumlicher Skalenunterschied besteht (BEVEN 1993, ZIMMERMANN 1995), und der Tatsache, dass ein Modell niemals alle in der Natur ablaufenden Prozesse in ihrer vollen Komplexität widerspiegeln kann.

Der zeitliche Skalenübergang beruht auf den Limitationen bei der Aufzeichnung von Messdaten im Gelände, welche nicht in Echtzeit erfolgen sondern stets Mittel- oder Summenwerte für diskrete Zeitabschnitte sind, und auf den Grenzen der Rechenleistung von Computern. Der räumliche Skalenübergang ist darauf zurückzuführen, dass ein in einer diskreten Messtiefe erfasster Parameter im Modell stets als repräsentativ für ein definiertes Kompartiment erscheint. BEVEN (1993) verwirft in diesem Zusammenhang den Begriff eines definierten numerischen Wertes für ein Parameteroptimum und schlägt stattdessen einen "optimalen Parameterbereich" vor. Dies impliziert die Annahme, dass es möglicherweise keine eindeutige sondern mehrere äquivalente Lösungen gibt.

Fragestellungen in der Bodenhydrologie stehen vielfach vor dem Dilemma, dass die entscheidende unabhängige Messgröße, die Tiefensickerung (BOUTEN 1995), im Freiland kaum bestimmt werden kann, ohne das System zu stören. Eine Überprüfung von Tiefensickerungen ist lediglich auf der Ebene von Einzugsgebieten in Form von Quellschüttungen oder Gewässerpegeln möglich. Selbst dabei können Unsicherheiten aufgrund mangelnder Abgrenzbarkeit von Einzugsgebieten verbleiben.

In der Praxis wird daher meist auf die Saugspannung zurückgegriffen (z. В. Воитем 1992, Schaaf 1992, Lischeid 1995, Zimmermann 1995). Diese Größe lässt sich durch Tensiometer relativ einfach in-situ bestimmen. Gegenüber dem Bodenwassergehalt hat dies den Vorteil einer theoretischen Untermauerung durch das Darcy-Gesetz bzw. die Richards-Gleichung (Abschnitt 2.3.5), in welchen Bodenwasserflüsse als Folge von Potenzialgradienten und nicht von Wassergehalten entstehen. Darüber hinaus gibt es bei der Wassergehaltsmessung nach wie vor ungelöste methodische Probleme. Die Vergleichsgröße Bodenwassergehalt hingegen hat den Vorteil, dass relative Veränderungen des Messwerts unmittelbare Informationen über das sich bewegende Wasservolumen liefern.

Der Vergleich zwischen simulierten und gemessenen Tensionen oder Wassergehalten ist allerdings insofern kein unabhängiges Ergebnis, als die Messwerte in der Regel bereits zur Anpassung von Modellparametern benutzt wurden. Er zeigt aber, inwieweit ein Modell in der Lage ist, nach bestmöglicher Anpassung die Kurvenverläufe abzubilden. Für eine Bilanzierung des Wasserhaushalts von Ökosystemen insgesamt ist eine möglichst gute Übereinstimmung in der größten Untersuchungstiefe am wichtigsten, da die hier beobachteten Tensions- oder Wassergehaltsverläufe Resultat der oberhalb stattfindenden Prozesse sind. Tensionsverläufe in der durchwurzelten Zone liefern Informationen darüber, ob transpirationsbedingte Wurzelwasseraufnahme, Bodenwasserfluss und Speicheränderung gleichzeitig richtig nachvollzogen werden.

Es kann versucht werden, dieses Dilemma zu umgehen, indem nur ein Teil des Zeitraums, für den Messungen vorliegen, zur Kalibrierung von Modellparametern herangezogen wird. Für den restlichen Untersuchungszeitraum liegen dann unabhängige Messungen vor.

Als Kalibrierparameter werden vielfach die hydraulische Leitfähigkeitsfunktion (z. B. BLOMвÄCK et al. 1995) und der Wasserentzug durch Pflanzenwurzeln in verschiedenen Bodentiefen herangezogen (z. B. ZIMMERMANN 1995). Der tiefenabhängige Wurzelwasserentzug stellt in der Richards-Gleichung (Gleichung 8) den Ouellen- und Senkenterm dar und ist auf der rechten Gleichungsseite nach Bestimmung der Materialeigenschaften die letzte Unbekannte. Da eine experimentelle Bestimmung des Wurzelwasserentzugs in einzelnen Bodenkompartimenten in der Regel nicht durchgeführt werden kann und vorliegende Daten über Wurzelverteilungen nur erste Anhaltspunkte über den tatsächlichen Wasserentzug liefern können, bietet sich diese Variable als weiterer Kalibrierparameter an.

Bei einer alternativen Vorgehensweise, indem z. B. im Labor bestimmte bodenhydraulische Parameter zur Kalibrierung des Modells eingesetzt werden, stellen sich die erzeugten Parametersätze häufig als inkonsistent heraus (z. B. LISCHEID 1995). Dies rührt aus methodischen Unsicherheiten sowohl bei der Bestimmung der Retentionsals auch der $K_{(\theta)}$ - Funktion (z. B. FLÜHLER et al. 1976, JANSSON 1996, Scheibke 1998, vergleiche auch Abschnitt 2.3.5.2) und dem erforderlichen Skalenübergang.

Nach erfolgter Auswahl der Vergleichsgrößen stellt sich die Frage eines geeigneten Gütekriteriums zur Beurteilung der Übereinstimmung zwischen Simulation und Messgröße. Statistische Verfahren, wie die Bestimmung des root-meansquare-Wertes (RMS), also der Wurzel der quadratischen Abweichungen zwischen gemessenen und simulierten Tensionen oder die Ermittlung von Korrelationskoeffizienten, werden häufig verwendet (Ававои et al. 1992, Janssen und Heu-BERGER 1995, BIEMELT 2001), besitzen jedoch ein nur limitiertes Aussagevermögen, da sie Prozesse im Boden ignorieren (LISCHEID 1995): Kleine Abweichungen von Matrixpotenzialen im feuchten Bereich beispielsweise haben immense Auswirkungen auf Wasserflüsse, große Abweichungen im trockenen Bereich wirken sich hingegen kaum aus.

Wichtig für die Anpassung eines Modells ist neben einer rein statistischen Betrachtung vor allem, dass das zeitliche Muster des Messwertverlaufes möglichst exakt wiedergegeben wird (SOROOSHIAN und GUPTA 1993). Insbesondere bei Matrixpotenzialen sind Abweichungen in der Steigung der Saugspannungskurve kritischer zu bewerten als Abweichungen der Absolutwerte innerhalb gewisser Grenzen (LISCHEID 1995). WHITMORE (1991) sowie JANSSEN und HEUBERGER (1995) weisen außerdem daraufhin, dass auch die Art, Menge und Qualität der gemessenen Daten entscheidenden Einfluss auf die Ergebnisse der Simulation haben.

Bisher ist es noch nicht gelungen, objektive Kriterien für die Berücksichtigung des hier aufgezeigten Faktorenkomplexes festzulegen (BEVEN 1993, BOUTEN 1995). Der Erfolg einer Kalibrierung ist daher nach wie vor entscheidend abhängig von einem möglichst optimalen Zusammenspiel von Fachkenntnissen des Anwenders (BOTTERWEG 1995), seinen zeitlichen und finanziellen Ressourcen sowie der Rechenleistung seines Computers (JANSSEN und HEUBERGER 1995). Aus den dargelegten Gründen wurde auf eine Heranziehung statistischer Kriterien zur Beurteilung der Simulationsgüte verzichtet.

2.5 Plausibilibilitätsprüfung der meteorologischen und hydrologischen Daten

Für alle Standorte lagen als Modellantrieb lückenlose, plausibilitätsgeprüfte meteorologische Daten vor. Der Lückenersatz erfolgte mit Hilfe des Simulationsmodells METEODATA (Rang 2003), die Plausibilitätsprüfung nach KNIEß und SCHER-ZER (2003). Die Windgeschwindigkeit wurde an einigen Stationen driftkorrigiert (z.B. Merzalben). Bei der Globalstrahlung wurde eine jährliche Ångström-Korrektur durchgeführt. Der Freilandniederschlag wurde in der Regel parallel mit mehreren Messsystemen erfasst:

- "Kippwaage": automatisch registrierender Regenschreiber mit Kippwaage
- "Pluvio": automatisch registrierender Regenschreiber mit Wägeprinzip (System der Fa. Ott)
- Einsatz auf den Messflächen der FAWF ab ca. 1996
- "Hellmann": Niederschlagsmesser nach Hell mann,
- wöchentliche manuelle Ablesung
- "Bulksamper": analoge Niederschlagssammler
- ("Depositionssammler"), Eigenbau der FAWF, wöchentliche manuelle Ablesung

Zur Kalibrierung und Validierung des Wasserhaushaltsmodells lagen außerdem umfassende bodenhydrologische Messreihen der Bodensaugspannung, des Bodenwassergehaltes und der Bodentemperatur vor. Diese Daten werden auf den einzelnen Monitoringflächen mit unterschiedlichen Messsystemen erfasst. Bei der Bodensaugspannung kommen sowohl Einstichtensiometer mit wöchentlicher Ablesung (z.B. Level II – Fläche Adenau) als auch automatisch registrierende Tensiometer (z.B. Level II – Flächen Merzalben und Leisel) unterschiedlicher Bauart (T8-Sonden der Firma UMS mit integriertem Bodentemperaturfühler; Tensiometer mit Druckmessumformer und Datenlogger - Eigenbau FAWF; Tensiologger der Firma ecoTech) zum Einsatz. Die Messung des Bodenwassergehaltes erfolgt sowohl mit automatischen TDR-Sonden (Level II – Flächen Merzalben, Leisel, Neuhäusel, Schaidt: 10 HS Bodenfeuchtesensor der Firma Decagon Devices; trime IT der Firma IMKO; ThetaProbe ML 2x FD-Sonde der Firma Delta-TDevices) als auch mit

manuell ablesbaren Geräten (z.B. Flächen des Kompensationsversuchs). Die Bodentemperatur wird mit automatischen Fühlern gemessen, welche teilweise in die Messköpfe der Tensiometer integriert sind.

Die Bodensaugspannung wurde nach folgenden Plausibilitätskriterien überprüft:

- Messbereich: maximal möglicher Überstau in cmWS (negativ) bis +850 hPa.
- Kontakt zur Bodenmatrix: Vergleich des Trends der Messwerte untereinander und Korrelation mit Niederschlagsereignissen.
- Lufteintritt ("Tensiometer ausgelaufen"): Anzeichen ist ein charakteristischer Verlauf über einen längeren Zeitraum, z. T. mehrere Monate: Trotz offensichtlichen Austrocknens des Bodens (z. B. Frühjahr, Frühsommer) liegen die ma ximal erreichten Saugspannungen sukzessive immer niedriger.

An den Standorten mit Einstichtensiometern liegt jeweils nur 1 Messwert pro Sensor und Woche vor. Dies erschwerte die Plausibilitätsprüfung, da die unmittelbare Reaktion der Tensiometer auf Niederschlagsereignisse in der Regel innerhalb von Stunden oder Tagen erfolgt. Die Messwerte des Bodenwassergehalts wurden auf Wertebereich, Drift und Offset geprüft und ggf. korrigiert. Die Berechnung arithmetischer Mittelwerte von Bodensaugspannung und Wassergehalte für einzelne Tiefenstufen ist aus konzeptionellen Gründen problematisch, da

- einzelne Sensoren zeitweise ausfallen und sich die Grundgesamtheit somit ändert
- Sickerungsprozesse im Boden stark nichtlinear verlaufen und eine Mittelwertbildung damit strenggenommen unzulässig ist.

Bei der Auswertung von Saugspannungs- und Wassergehaltsdaten wurden daher lediglich unmittelbar im Anschluss an den Ausfall einzelner oder mehrerer Sensoren aus den jeweils vorhandenen Einzelwerten ein Mittelwert bestimmt. Für die folgenden Messtage wurde dagegen die mittlere Differenz zum Vorwert berechnet. Diese Vorgehensweise weist insbesondere den Vorteil auf, weniger sensibel auf einmalige oder sukzessive Ausfälle einzelner Sensoren zu reagieren als die übliche Mittelwertformel.

2.6 Auswertegrößen: Definition und Vorgehen

Maximale Wurzeltiefe

Die maximale Wurzeltiefe wurde in erster Näherung auf Grundlage der Angaben in der jeweiligen Profilbeschreibung abgeschätzt und ggf. im Rahmen der Kalibrierung des Bodenwasserhaushaltsmodells optimiert.

Feldkapazität (FK)

Die Feldkapazität wurde aus der Modell-pF-Kurve ermittelt, welche auf der z.T. skelettkorrigierten Labor-pF-Kurve beruht. Die Feldkapazität beschreibt die Bodenwassermenge, welche ein natürlich gelagerter Boden maximal gegen die Schwerkraft festzuhalten vermag. Ihr entspricht in der Regel eine Wasserspannung des Bodenwassers von 300 hPa (pF-Wert = 2,5). Rechnet man langsam bewegliches Sickerwasser hinzu, das von wachsenden Pflanzenwurzeln z.T. erreicht werden kann, liegt der Grenzwert der Wasserspannung des Bodenwassers bei etwa 60 hPa (pF-Wert = 1,8). Im Vergleich zu diesen in Deutschland gebräuchlichen Werten sind in Großbrittannien 50 hPa, in den Niederlanden 100 hPa und in den USA 300 hPa als Grenzwert der Saugspannung bei Feldkapazität üblich (BATJES 1996).

Permanenter Welkepunkt (PWP)

Als Permanenten Welkepunkt bezeichnet man den Wassergehalt des Bodens, bei dem die meisten Pflanzen (außer ausgesprochenen Trockenund Salzpflanzen) permanent welken, d.h. auch in wasserdampfgesättigter Luft ihre Turgeszenz nicht wiedergewinnen. Dieser Zustand tritt ein, wenn das Bodenwasser unter einer Wasserspannung von etwa 15000 hPa (pF = 4,2) steht. Der Permanente Welkepunkt wurde ebenso wie die Feldkapazität aus der Modell-pF-Kurve ermittelt.

Nutzbare Feldkapazität (nFK)

Der pflanzenverfügbarere Anteil des Bodenwassers, auch als nutzbare Feldkapazität bezeichnet, lässt sich aus der Differenz der Wassergehalte bei Feldkapazität und Permanentem Welkepunkt ermitteln (d.h. nFK = FK – PWP). Der Bodensaugspannungsbereich der nutzbaren Feldkapazität liegt nach deutschen Konventionen somit zwischen 60 hPa (300 hPa) und 15000 hPa.

FAO-Referenzverdunstung

Für eine internationale Vergleichbarkeit der Verdunstung an unterschiedlichen Standorten wurde die FAO-Referenzverdunstung eingeführt. Diese beschreibt die hypothetische Verdunstung von einer Grasoberfläche, für die folgende Eigenschaften festgelegt wurden: ausreichende Wasserversorgung, Graslänge von 0,12 m, Stomatawiderstand von 70 s/m, aerodynamischer Widerstand von 208/u s/m (u = Windgeschwindigkeit in 2 m Höhe) und Albedo von 0,23 (www. hydroskript.de). Die Berechnung der Gras-Referenzverdunstung erfolgte in täglicher Auflösung nach dem Standardverfahren der FAO unter Verwendung der Penman-Monteith-Gleichung (ALLEN et. al 1998). Die konkrete Umsetzung bei der Berechnung der Referenzverdunstung der Level II - Flächen erfolgte unter Verwendung einer modifizierten Vorlage des Autors des FAO-Referenzverfahrens, Richard G. Allen/ University of Idaho. (Internet-Dokument http://www.kimberly. uidaho.edu/ref-et). Für die Untersuchungsstandorte lagen keine lückenlosen Zeitreihen von Tagesminima und -maxima der Luftfeuchte vor. Es wurden anstelle dessen die jeweiligen Tagesmittel eingesetzt. Testrechnungen zeigten hierdurch bedingte Abweichungen der Referenzverdunstung von weniger als 1 %.

Klimatische Wasserbilanz

Die Klimatische Wasserbilanz ist ein Maß für das Wasserdargebot eines Standorts ohne Berücksichtigung von Boden- und Bestandseigenschaften. Sie wird als Differenz des Freilandniederschlags und der FAO-Referenzverdunstung berechnet. Analog zur FAO-Referenzverdunstung eignet sie sich somit insbesondere für rein klimatische Fragestellungen. Für die Level II – Flächen wurden jährliche kumulative Klimatische Wasserbilanzen berechnet. Hierbei wurden die windkorrigierten (pauschaler Korrekturfaktor 1,05 für 1 m Messhöhe) und abgeglichenen täglichen Freiflächenniederschläge aufsummiert und die tägliche Gras-Referenzverdunstung subtrahiert.

Bodensaugspannung / Tension

Für die Bodensaugspannung ("Tension") liegen von fast allen Flächen Messwerte vor. Diese wurden visuell mit simulierten Tensionen verglichen. Ausschlaggebend ist hierbei neben dem Wertebereich auch die zeitliche Dynamik von Austrocknung (Tension steigt) und Wiederbefeuchtung (Tension fällt). Bei der Interpretation der in Abschnitt 3 "Ergebnisse" dargestellten Bodentiefen ist zu beachten, dass sich 0 cm Tiefe auf die Oberkante der organischen Auflage (soweit im Modell berücksichtigt) bezieht.

Bodenwassergehalt, Bodentemperatur

An einzelnen Versuchsflächen wird zusätzlich auch der Bodenwassergehalt oder die Bodentemperatur gemessen. Auch diese wurden analog der Bodensaugspannung mit den simulierten Werten verglichen.

Grundwasserspiegel

Am Standort Schaidt lagen zusätzlich auch Messwerte des Grundwasserspiegels vor (Pegelrohre). Auch hier konnten die Messwerte mit den entsprechenden Simulationsergebnissen verglichen werden.

Bilanzkomponenten des Wasserhaushalts

Die Bilanzkomponenten wurden mit dem Wasserhaushaltsmodell analog zu Gleichung 1 berechnet. Der gemessene, um einen Faktor von 1,05 korrigierte, Freilandniederschlag wurde dabei den simulierten Komponenten der Evapotranspiration (Interzeption (z.T. Messwerte), Evaporation, Transpiration) und des Abflusses (Oberflächenabfluss, Tiefensickerung, ggf. lateraler Abfluss) gegenübergestellt. Als Differenz hieraus ergibt sich die Speicheränderung. Sie gibt das Aufzehren- bzw. Wiederbefüllen des Bodenwasserspeichers in trockenen bzw. feuchteren Jahren wieder. Eine Speicheränderung ist somit für jedes Jahr in einem größeren oder kleineren Umfang zu erwarten. Die Wasserhaushaltskomponenten sind jeweils tabellarisch (Jahressummen) und grafisch (% des Freilandniederschlags) dargestellt.

Bodenwasservorrat

Aus den Simulationsergebnissen wurde für jeden Tag des Jahres die Wertespanne und der Mittelwert des Wasservorrats im Wurzelraum ermittelt. Vergleichend dazu wurde außerdem der Jahresgang des Bodenwasservorrats im Trockenjahr 2003 dargestellt.

Indikatoren für Trockenstress

Die Bodenwasserverfügbarkeit wurde in täglichen Zeitschritten als relative Bodenwasserverfügbarkeit, d.h. als aktueller Anteil an der nutzbaren Feldkapazität, differenziert nach Bodentiefen, berechnet. Eine Wasserverfügbarkeit von 0 mm bedeutet somit, dass das Integtral des aktuellen Bodenwassergehalts über die Durchwurzelungstiefe dem über dieselbe Tiefe gemittelten Wassergehalt am Permanenten Welkepunkt entspricht. Neben der Bodenwasserverfügbarkeit wurden in den entsprechenden Grafiken auch die bei ANDERS et al. (2002) zitierten Schwellenwerte für Trockenstress bei Kiefer auf Nordostdeutschen Sandstandorten von 60 % der nFK ("Verlangsamung der Durchmesserzunahme") und 40 % der nFK ("Erliegen der Durchmesserzunahme") berücksichtigt.

Indikatoren für Sauerstoffmangel

Zur Abschätzung des Luftmangels im Wurzelraum wurde - einem Vorschlag von FALK und OSENSTET-TER (2011) folgend - der Mittelwert der aktuellen Luftkapazität bezogen auf das Porenvolumen in den oberen 30 cm des Bodens berechnet (AIR30). Je niedriger dieser Werte ist, desto weniger Poren sind mit Luft gefüllt. Anhand des AIR30-Wertes kann eine relative Abstufung der Standorte bezüglich des Luftmangels durchgeführt werden. Neben dem Absolutwert muss hierbei die Dauer berücksichtigt werden, da erst längere Phasen des Luftmangels das Wurzelwachstum beeinflussen.

3 Wasserhaushalt der Untersuchungsstandorte

3.1 Wasserhaushalt der Level II-Flächen des forstlichen Umweltmonitorings

3.1.1 Konzept des forstlichen Umweltmonitorings

Waldökosysteme unterliegen in Mitteleuropa bereits seit mehr als einem Jahrtausend gravierenden anthropogenen Einwirkungen. Während in früheren Jahrhunderten unmittelbare Eingriffe in den Waldbestand und den Waldboden durch Rodung, Übernutzung, Streurechen und Plaggenhiebe im Vordergrund standen, gewannen mit zunehmender Industrialisierung indirekte Wirkungen durch den Eintrag von Luftverunreinigungen in den Waldboden an Bedeutung. Letztere lassen allmähliche Veränderungen vor allem des chemischen Bodenmilieus und damit eine schleichende Standortsdrift befürchten. Durch die rasant angestiegene Emission von Klimagasen treten zunehmend auch Veränderungen der klimatischen Bedingungen auf. Die Erkennung derartiger Veränderungen in den Standortsbedingungen der Waldökosysteme ist eine grundlegende Voraussetzung, um rechtzeitig gegensteuern zu können bzw. den bereits vorhandenen Schaden in Grenzen zu halten. Eine dauerhafte Kontrolle der Auswirkungen anthropogener Einflüsse auf die Funktionsfähigkeit der Waldökosysteme ist daher eine vordringliche Aufgabe aller für den Wald und die Umwelt verantwortlichen Institutionen.

Diese fortlaufende Überwachung des Zustandes der Waldökosysteme erfolgt in Rheinland-Pfalz seit 1983 mit Hilfe von landesweiten Übersichtserhebungen (Level I) und anhand von Intensivuntersuchungen an Waldökosystem-Dauerbeobachtungsflächen (Level II) (BLOCK 1987).

Als landesweite Übersichtserhebungen erfolgen jährlich Kronenzustandserhebungen und periodisch Bodenzustands- und Waldernährungserhebungen. Die Aufnahmen auf einem systematischen Raster erlauben flächenrepräsentative Aussagen über den aktuellen Zustand der Waldökosysteme des jeweiligen Bezugsgebietes. Hierdurch können Schadensschwerpunkte lokalisiert und aktuelle Entwicklungstendenzen des Waldzustandes aufgezeigt werden.

Intensivuntersuchungen an Waldökosystem-Dau-

erbeobachtungsflächen erfolgen demgegenüber an gezielt ausgewählten, für bedeutsame Standorts- und Bestockungsverhältnisse der jeweiligen Waldregionen charakteristischen Ökosystemen. Für diese Standorte liegen umfangreiche Informationen vor. Sie dienen der Untersuchung von Ursache-Wirkungsbeziehungen im Hinblick auf die Belastung der Waldökosysteme durch natürliche und anthropogene Stresseinwirkungen. Insbesondere sollen sie dazu beitragen,

- die Kenntnisse über die Dynamik in Waldökosystemen und die Reaktion dieser Systeme auf veränderte Umweltbedingungen zu erweitern,
- Kausalzusammenhänge zwischen Veränderungen im Waldökosystem und den auf dieses System einwirkenden Faktoren zu erkennen,
- Prognosen der zukünftigen Entwicklung der Waldökosysteme bei unterschiedlichen Belastungsszenarien zu ermöglichen und
- Hinweise zur Ableitung von Vorsorge- und Restaurationsmaßnahmen zu erhalten.

Der Rahmen dieser Waldökosystem-Intensivuntersuchungen besteht aus 38 Kronenzustands-Dauerbeobachtungsflächen (13 Fichten-, 7 Kiefern-, 8 Eichen- und 10 Buchenflächen). Alle übrigen Untersuchungen sind diesen Kronenzustands-Dauerbeobachtungsflächen räumlich zugeordnet, wobei die Gesamtausstattung mit Beobachtungs- und Meßeinrichtungen von Fläche zu Fläche erheblich variiert.

8 der 38 Standorte sind als Level II Flächen ausgebaut. Hier erfolgt neben einer kontinuierlichen Erfassung meteorologischer und bodenphysikalischer Parameter auch eine fortlaufende Simulation des Standortswasserhaushalts.

Den 8 Standorten ist entweder eine Waldklimastation der FAWF oder eine Waldstation des Zentralen Immissionsmessnetzes (ZIMEN) mit entsprechenden meteorologischen Messvorrichtungen zugeordnet.

Eine eingehende Beschreibung des forstlichen Umweltmonitorings in Rheinland-Pfalz, der einzelnen Untersuchungsflächen und der bisherigen Ergebnisse enthalten die entsprechenden Webseiten der FAWF (http://www.fawf.wald-rlp.de/ index.php?id=3013).

3.1.2 Adenau Level II (Fichte)

Standort und Bestand

An der Level II-Fläche Adenau stockt ein mäßig wüchsiger, weitgehend geschlossener, 105-jähriger (2012) Fichtenaltbestand. Der Standort ist ein Braunerde-Podsol mit einer Hauptlage aus lösslehmführendem Gruslehm über einer Mittellage aus Gruslehm und einer Basislage aus Lehmschutt aus devonischem Schluff- und Sandstein. Die Fläche ist in das bundesweite Bodendauerbeobachtungsflächen-Programm integriert. Eine eingehende Beschreibung der Bodendauerbeobachtungsfläche (BDF) Adenau (Flächennummer

8) enthält Deнner et al. 2011.

Die Fläche ist zugleich eine Level II-Fläche des europaweiten Forstlichen Umweltmonitorings (EU-Fläche 702). Das umfangreiche Messprogramm umfasst unter anderem kontinuierliche meteorologische Messungen an einer Waldklimastation, Depositionsmessungen im Freiland und im Waldbestand, Immissionsmessungen mit Passivsammlern, Streufallmessungen und Sickerwasseranalysen in zwei Bodentiefen.

Datengrundlage und Modellparameter

Es stehen lückenersetzte und geprüfte Klimadaten (Tageswerte) für den Zeitraum 01.01.1988 – 31.12.2010 zur Verfügung (Tabelle 2). Das Messprogramm Bodenhydrologie umfasst 5 Einstichtensiometer in 60 cm Tiefe. Die Wasserretentionseigenschaften ("pF-WG-Kurve") wurden 2004/2005 im Labor der FAWF horizontbezogen neu bestimmt und die Modellparameter nach Brooks-und-Corey neu abgeleitet (Tabelle 4). Eine Übersicht der Vegetationsparameter befindet sich in Tabelle 5.

Tabelle 2:Adenau Level II, Datengrundlage Meteorologie und Bodenhydrologie (LT: Lufttemperatur,
LF: Luftfeuchte, WS: Windgeschwindigkeit, FNS: Freilandniederschlag, GS: Globalstrahlung
BNS: Bestandesniederschlag).

Adenau Level II, data basis meteorology and soil hydrology (LT: air temperature, LF: relative humidity, WS: wind speed, FNS: bulk precipitation, GS: global radiation, BNS: throughfall).

Klimastation	Adenau (FAWF-Nr. 101a701)
Lage der Klimastation	X GK2 : 2577746 Y GK2 : 5589548 Höhe über NN: 595 m; W-Hang, 5 % Neigung Ca. 0,7 ha große Grasfläche inmitten eines großen, fichtendo- minierten Waldgebietes der Osteifel Klimastation liegt ca. 600 m nördlich der Monitoringfläche
Messvariablen	LT, LF, WS, FNS, GS
Messsysteme FNS	Kippwaage, Pluvio, Hellmann, Bulksampler
Bestandesniederschlag	Bulksampler
Besonderheiten	Klimastation umgeben von aufwachsendem Fichtenbestand, in Morgen- und Abendstunden teilweise Beschattung, Driftkorrek- tur der Windgeschwindigkeit
Zeitraum mit geprüften und lückenersetzten Daten (Tageswerte)	01.01.1988 – 31.12.2010
Modellantrieb Niederschlag	BNS
Windkorrekturfaktor (Coupmodel)	1
Bodensaugspannung	seit 2002: Einstichtensiometer in 54 cm Tiefe
Bodenwassergehalt	-
Datengrundlage Modellparameter Boden	Labor-pF-Kurve von 2004/05 (modifiziert)., Labor-k _{matrix} -

 Tabelle 3:
 Adenau Level II, meteorologische Daten (Jahresmittelwerte, bei Niederschlag: Jahressumme); LT: Lufttemperatur, LF: Luftfeuchte, WS: Windgeschwindigkeit, FNS: Freilandniederschlag, GS: Globalstrahlung.

Adenau Level II, meteorologic data (annual means, bulk precipitation as annual sum); LT: air temperature, LF: relative humidity, WS: wind speed, FNS: bulk precipitation, GS: global radiation)

Jahr	LT (°C)	LF (%)	WS (m/s)	FNS (mm/a)	GS (W/m²)
1988	7,2	87	1,0	959	108
1989	7,7	82	1,0	783	125
1990	7,7	83	1,0	818	110
1991	7,4	82	0,8	623	114
1992	8,7	83	0,8	925	113
1993	7,2	85	1,0	1008	113
1994	8,2	90	1,0	790	112
1995	7,4	89	1,1	838	108
1996	5,9	88	0,9	683	109
1997	7,8	89	0,9	771	123
1998	7,8	89	1,1	891	113
1999	8,5	87	1,2	849	110
2000	8,6	88	1,2	957	101
2001	7,8	89	1,2	979	107
2002	8,5	88	1,2	943	110
2003	8,6	82	1,2	658	130
2004	7,8	88	1,4	964	114
2005	8,3	88	1,5	930	120
2006	8,4	83	1,1	799	111
2007	7,1	86	1,2	1048	110
2008	6,1	88	1,2	828	109
2009	6,5	87	1,2	875	113
2010	6,1	83	1,0	895	105
Mittelwert	7,6	86	1,1	862	113

Tabelle 4:Adenau Level II, Modellparameter Boden (λ: Porenverteilungsindex, Psie: Lufteintritts
punkt, FK: Feldkapazität, PWP: permanenter Welkepunkt, nFK: nutzbare Feldkapazität,
K_{matrix}: hydraulische Leitfähigkeit der Bodenmatrix, K_{makro}: gesättigte hydraulische
Leitfähigkeit).
Adenau Level II, model parameters soil. (λ: pore size distribution index, Psie: air-entry tension,

*FK: field capacity, PWP: wilting point, nFK: available field capacity, K*_{matrix}: hydraulic conductivity of soil matrix, K_{matrix}: saturated hydraulic conductivity).

Horizont	Tiefe		Psie	Porosität	FK	PWP	nFK	K _{matrix}	K _{makro}
	(cm)	(-)	(hPa)	(%)	(Vol.%)	(Vol.%)	(Vol.%	(m/d)	(m/d)
Auflage	0 - 10	0,30	10,36	79	55,7	27,0	28,7	2,1	10
Ahe	10 - 15	0,17	12,50	35	28,8	9,9	18,9	1,0	10
Bv	15 - 55	0,12	7,07	38	29,6	12,9	16,7	0,7	10
BvCv	55 - 85	0,12	5,01	17	12,7	5,5	7,2	0,5	10

Tabelle 5: Adenau Level II, Modellpara Penman-Monteith-Gleichu zunehmender Bodentiefe).	Adenau Level II, Modellparameter Vegetation (r _s : Oberflächenwiderstand Transpiration der Penman-Monteith-Gleichung, exp.: exponentielle Abnahme der Wurzeldichte mit zunehmender Bodentiefe).							
Adenau Level II, model param Monteith-equation, exp.: exp	Adenau Level II, model parameters vegetation (r_s : surface resistance of transpiration for Penman- Monteith-equation, exp.: exponential reduction of root density with soil depth).							
Blattflächenindex (m²/m²)	7,8 (vor Durchforstung in Nov. 2004 9,45)							
Interzeptionskapazität (mm/LAI)	-							
r _s (Vegetationsperiode) (s/m)	90							
kritischer Wassergehalt bei Luftmangel (Vol.9	6) 1							
kritische Saugspannung bei Austrocknung (hF	a) 300							
maximale Wurzeltiefe (cm ab Oberkante Auf	age) 85							
Wurzelverteilung exp.								
kompensatorische Wasseraufnahme bei Wass	ja ja							
Intensität kompensatorische Wasseraufnahm	e (-) 1							

Ergebnisse

FAO-Referenzverdunstung und Klimatische Wasserbilanz

Tabelle 6:	Adenau Level II, FAO-Referenzverdunstung und Klimatische Wasserbilanz. Adenau Level II, FAO reference evapotranspiration and climatic water balance.						
Jahr	FAO-Referenzverdunstung (mm/a)	Klimatische Wasserbilanz (mm/a)					
1988	476,8	530,0					
1989	539,9	282,5					
1990	529,0	330,3					
1991	531,6	122,9					
1992	549,7	421,9					
1993	518,1	539,9					
1995	514,9	314,1					
1995	505,6	374,6					
1996	483,4	233,6					
1997	538,7	270,5					
1998	523,6	412,4					
1999	537,1	354,0					
2000	507,3	497,7					
2001	509,7	518,3					
2002	492,7	497,1					
2003	596,7	94,3					
2004	509,8	502,1					
2005	536,2	440,1					
2006	551,2	288,1					
2007	484,4	615,7					
2008	468,8	400,8					
2009	480,3	438,6					
2010	521,8	418,3					
Summe	11907,5	8897,9					
Mittelwert	517,7	386,9					

Tabelle 7:

Adenau Level II, components of the water balance.

Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption ²⁾ (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (mm)	Tiefen- sickerung (200 cm) (% des FNS)	Speicher- änderung (0-200 cm (mm)
1988	1006,8	349,7	0,0	31,6	258,2	369,6	36,7	-2,3
1989	822,3	324,8	0,0	51,5	250,9	201,5	24,5	-6,4
1990	859,2	309,4	0,0	42,9	236,9	206,0	24,0	64,0
1991	654,6	221,3	0,0	41,1	216,8	225,3	34,4	-50,0
1992	971,6	312,8	0,0	46,6	374,5	253,6	26,1	-16,0
1993	1057,9	314,4	0,0	38,7	289,7	358,7	33,9	56,4
1994	829,0	296,2	0,0	23,2	240,5	314,0	37,9	-44,8
1995	880,2	360,7	0,0	22,1	225,3	284,0	32,3	-11,9
1996	717,0	275,0	0,0	30,9	217,7	183,2	25,6	10,2
1997	809,2	377,0	0,0	25,9	270,6	148,0	18,3	-12,3
1998	936,0	379,9	0,0	24,2	220,2	309,8	33,1	2,0
1999	891,1	342,9	0,0	30,9	207,2	294,0	33,0	16,1
2000	1005,1	409,8	0,0	35,4	248,6	325,9	32,4	-14,8
2001	1028,1	421,5	0,0	30,5	224,5	333,5	32,4	18,0
2002	989,8	325,4	0,0	33,8	282,1	345,8	34,9	2,8
2003	691,0	271,7	0,0	45,5	233,9	166,8	24,1	-26,9
2004	1011,9	392,6	0,0	30,2	290,9	288,2	28,5	10,0
2005	976,3	308,2	0,0	40,1	283,8	326,3	33,4	17,9
2006	839,3	350,6	0,0	53,0	290,4	200,1	23,8	-54,7
2007	1100,1	375,3	0,0	50,5	272,4	388,3	35,3	13,5
2008	869,7	305,6	0,0	38,4	252,6	211,4	24,3	61,7
2009	919,0	316,0	0,0	39,4	249,2	335,0	36,5	-20,6
2010	940,2	363,7	0,0	53,3	258,2	315,3	33,5	-50,4
Summe	20805,5	7704,8	0,0	859,6	5894,9	6384,5	-	-38,3
Mittelwert	904,6	335,0	0,0	37,4	256,3	277,6	30,4	-1,7

¹⁾ windkorrigiert ²⁾ Messwert

 Abbildung 2:
 Adenau Level II, Bilanzkomponenten des Wasserhaushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung.

 Adenau Level II, components of the water balance; top: values in mm/a; bottom: relative amounts (percent of bulk precipitation); DeltaS: change of storage.

 Abbildung 3:
 Adenau Level II, simulierter Bodenwasservorrat im Wurzelbereich.

 Adenau Level II, simulated soil water storage in the rooting zone.

Besonderheiten

Die Messwerte der Windgeschwindigkeit wurden im Zeitraum 2002 - 2006 driftkorrigiert. Ursache ist möglicherweise ein "Einwachsen" der Freifläche vor der erneuten Freistellung. Auffallend ist die in den Jahren 2007 - 2009 gegenüber den Vorjahren deutlich zurückgegangene Lufttemperatur (Mittel und Amplitude). Hierbei handelt es sich möglicherweise um ein Artefakt, welches zu einem späteren Zeitpunkt durch eine Homogenisierung der Zeitreihe bereinigt werden muss (Tabelle 3).

Die Dynamik des gemessenen Bestandesniederschlages im Zeitraum 1988 - 2009 konnte durch das Wasserhaushaltsmodell nicht zufriedenstellend nachvollzogen werden. Mögliche Ursache sind Messfehler des Freiland- oder Bestandesniederschlages, die räumliche Entfernung zwischen Klimastation und Monitoringfläche oder eine unzureichende Modellvorstellung. Aus diesem Grund wurde der Bestandesniederschlag als treibende Modellvariable verwendet und die Interzeption nicht simuliert. Der Blattflächenindex des Bestandes wurde entsprechend der Durchforstung im November 2004 angepasst. Die Evaporation stieg dadurch bis zu 10 mm/Jahr⁻¹ an, die Transpiration nahm geringfügig ab. Die Bodensaugspannung wird durch die Simulation sowohl im Herbst/Winter als auch in der Austrocknungsphase gegenüber der Messung in einzelnen Jahren etwas überschätzt (Abbildung 1).

3.1.3 Merzalben Level II (Eiche mit Buche) Standort und Bestand

Am Standort Merzalben stockt ein wüchsiger, zum Teil lückiger, ca. 207-jähriger (2012) Traubeneichenaltbestand mit einem dichten Buchenunterstand. Der Standort ist eine podsolige Braunerde mit einer Hauptlage aus sandlösslehmführendem Lehmsand über einer Mittellage aus kiesführendem Sand und einer Basislage aus grusführendem Sand über tiefem schuttführendem Sand (tertiärer Zersatz aus Buntsandstein). Die Fläche Merzalben ist in das bundesweite Bodendauerbeobachtungsflächen-Programm integriert. Eine eingehende Beschreibung der BDF Merzalben (Fläche Nr. 2) enthält Deнner et al. 2011.

Die Fläche ist zugleich eine Level II-Fläche des europaweiten Forstlichen Umweltmonitorings (EU-Fläche 705). Das umfangreiche Messprogramm umfasst neben meteorologischen Messungen an einer Waldklimastation auch meteorologische Messungen und Luftschadstoffmessungen an einer Station des Zentralen Immissionsmessnetzes (ZIMEN), Streufallmessungen, Depositionsmessungen im Freiland und Bestand und Sickerwassermessungen in drei verschiedenen Bodentiefen.

Tabelle 8:	Merzalben Level II, Datengrundlage Meteorologie und Bodenhydrologie. Merzalben Level II, data basis meteorology and soil hydrology.					
Klimastation		Merzalben (FAWF-Nr. 329a703)				
Lage der Klimastation		X GK2 : 2631193 Y GK2 : 5461353 Höhe über NN: 515 m; eben ca. 1,0 ha große Grasfläche inmitten eines großen, laubholzdominierten Waldgebietes des Pfälzerwaldes Klimastation liegt ca. 600 m nordwestlich der Monitoringfläc				
Messvariablen		LT, LF, WS, FNS, GS				
Messsysteme I	FNS	Kippwaage, Pluvio, Hellmann, Bulksampler				
Bestandesniederschlag		Bulksampler (1987-1990 auch Stammabfluss- messsysteme an Eichen und unterständigen Buchen; seither prozentuale Erhöhung des Kronendurchlasses um Schätzwert Stammabfluss)				
Besonderheiten		Driftkorrektur der Windgeschwindigkeit				
Zeitraum mit geprüften und lückenersetzten Daten (Tageswerte)		01.01.1988 – 31.12.2010				
Modellantrieb	Niederschlag	BNS				
Windkorrekturfaktor (Coupmodel)		1				
Bodensaugspannung		seit 1998: automat. Tens. in 30-60 cm Tiefe seit 2004: automat. Tens. in 110 cm Tiefe seit 2009: Tensiologger in 30-110 cm Tiefe				
Bodenwassergehalt		1993-1997: TDR in 30-100 cm Tiefe 1998-2004: automat. TDR in 15-60 cm Tiefe seit 2004: automat. TDR in 30-110 cm Tiefe				
Bodentemperatur		1998-2004: Fühler in 15-25 cm Tiefe seit 2004: Fühler in 30-110 cm Tiefe				
Datengrundlag	ge Modellparameter Boden	Feld-pF-Kurve von 2002/03 (modifiziert), hydraulische Leitfähigkeiten invers optimiert				

Datengrundlage und Modellparameter

		5			
Jahr	LT (°C)	LF (%)	WS (m/s)	FNS (mm/a)	GS (W/m²)
1988	9,8	86	1,8	1067	115
1989	11,0	82	1,6	905	127
1990	10,5	81	1,7	841	123
1991	8,8	78	1,6	711	123
1992	9,6	83	1,7	884	121
1993	8,8	84	1,8	955	119
1994	9,8	84	1,9	981	116
1995	9,1	84	1,6	1174	120
1996	7,4	84	1,5	782	122
1997	9,1	82	1,5	952	120
1998	9,0	85	1,8	1075	116
1999	9,5	84	2,0	1081	119
2000	10,4	84	1,9	1185	118
2001	9,9	84	1,9	1186	121
2002	10,4	84	2,0	1153	120
2003	10,9	77	2,1	690	140
2004	9,9	83	2,3	908	122
2005	10,5	83	2,2	806	133
2006	9,6	82	2,1	998	122
2007	9,7	82	2,0	991	119
2008	9,2	83	2,1	907	120
2009	9,4	86	2,0	896	120
2010	7,8	82	1,7	1176	118
Mittelwert	9,6	83	1,9	974	122

Tabelle 9:Merzalben Level II, meteorologische Daten.Merzalben Level II, meteorologic data.

Adenau Level II, model parameters soil.									
Horizont	Tiefe	λ	Psie	Porosität	FK ¹⁾	PWP ¹⁾	nFK ¹⁾	K _{matrix}	K _{makro}
	(cm)	(-)	(hPa)	(%)	(Vol.%)	(Vol.%)	(Vol.%	(m/d)	(m/d)
A(e)h+Bvh	0 - 45	0,35	24,99	30	21	3	18,0	0,50	0,50
Bv	45 - 85	0,29	15,79	38	24,5	5	19,5	0,80	0,80
Bv+Cv+Cv	85 - 135	0,75	29,01	43,5	29,5	10	19,5	0,08	0,15

Tabelle 10: Adenau Level II. Modellparameter Boden

¹⁾ Feld-pF-Kurve, daher nicht skelettkorrigiert

Tabelle 11:	Merzalben Level II, Modellparameter Vegetation. Merzalben Level II, model parameters vegetation.				
Blattflächenind	ex (m²/m²)	1 (Winter)- 7,5* (Sommer)			
Interzeptionska	pazität (mm/LAI)	-			
r _s (Vegetationsperiode) (s/m) 140					
kritischer Wassergehalt bei Luftmangel (Vol.%) 5					
kritische Saugspannung bei Austrocknung (hPa) 400					
maximale Wurz	120				
Wurzelverteilung exp.					
kompensatorische Wasseraufnahme bei Wasserstress ja					
Intensität kompensatorische Wasseraufnahme (-) 0,6					

* Parameter mit saisonaler und/oder jährlicher Variation

Ergebnisse

FAO-Referenzverdunstung und Klimatische Wasserbilanz

Tabelle 12:	Merzalben Level II, FAO-Referenzverdunstung Merzalben Level II, FAO reference evapotranspir	g und Klimatische Wasserbilanz. ation and climatic water balance.
Jahr	FAO-Referenzverdunstung (mm/a)	Klimatische Wasserbilanz (mm/a)
1988	547,1	572,8
1989	619,0	331,7
1990	607,5	275,4
1991	600,2	146,0
1992	591,0	337,2
1993	590,8	411,8
1995	579,0	451,4
1995	593,3	639,1
1996	557,3	263,6
1997	587,3	412,5
1998	572,1	556,5
1999	609,7	525,1
2000	605,7	638,9
2001	607,0	638,0
2002	606,5	604,1
2003	751,0	-26,3
2004	629,9	323,2
2005	653,6	192,4
2006	650,5	397,8
2007	627,7	412,6
2008	616,9	335,6
2009	585,5	446,1
2010	602,0	633,2
Summe	13990,6	9518,5
Mittelwert	608,3	413,8

	Merzal	ben Level II, c	components c	of the water ba	alance.			
Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption ^{z)} (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (mm)	Tiefen- sickerung (235 cm) (% des FNS)	Speicher- änderung (0-235 cm (mm)
1988	1119,9	289,9	0,0	54,7	299,5	489,7	43,7	-13,9
1989	950,7	246,1	0,0	38,8	369,9	303,3	31,9	-7,4
1990	882,9	228,6	0,0	85,1	347,6	246,6	27,9	-24,9
1991	746,2	171,4	0,0	89,3	286,3	210,9	28,3	-11,6
1992	928,2	106,6	0,0	93,0	341,2	367,3	39,6	20,2
1993	1002,6	154,0	0,0	60,0	325,9	303,7	30,3	158,9
1994	1030,4	130,6	0,0	72,6	324,2	633,7	61,5	-130,8
1995	1232,3	176,9	0,0	97,4	317,5	638,0	51,8	2,5
1996	820,9	158,2	0,0	64,0	274,7	326,2	39,7	-2,3
1997	999,8	158,1	0,0	53,0	336,8	440,4	44,1	11,5
1998	1128,6	194,4	0,0	56,9	306,4	570,1	50,5	0,7
1999	1134,8	205,3	0,0	55,3	310,8	503,0	44,3	60,5
2000	1244,5	151,7	0,0	63,1	337,4	755,3	60,7	-63,0
2001	1269,5	203,5	0,0	62,0	330,7	629,9	49,6	43,4
2002	1210,6	197,7	0,0	59,1	317,1	656,0	54,2	-19,4
2003	724,7	148,9	0,0	63,2	332,8	327,2	45,1	-147,3
2004	953,1	188,4	0,0	62,8	349,7	249,7	26,2	102,5
2005	846,0	117,2	0,0	60,7	373,4	353,3	41,8	-58,7
2006	1048,3	131,9	0,0	66,4	401,9	418,1	39,9	30,0
2007	1040,3	167,3	0,0	69,4	365,4	427,4	41,1	10,8
2008	952,5	144,5	0,0	66,9	336,4	401,2	42,1	3,5
2009	1031,6	182,6	0,0	54,0	307,3	411,4	39,9	76,4
2010	1235,2	215,9		61,7	365,6	579,8	46,9	12,2
Summe	23533,6	4069,7	0,0	1509,4	7658,5	10242,2	-	53,8
Mittelwert	1023,2	176,9	0,0	65,6	333,0	445,3	43,5	2,3

 Tabelle 13:
 Merzalben Level II, Bilanzkomponenten des Wasserhaushalts.

¹⁾ windkorrigiert ²⁾ Messwert

Abbildung 9: Merzalben Level II, Bilanzkomponenten des Wasserhaushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung. Merzalben Level II, components of the water balance; top: values in mm/a;

Merzalben Level II, relative air content per pore volumen in top soil (0-30 cm deph) ("AIR30).

Besonderheiten

Analog zu Adenau wurde auch in Merzalben eine Driftkorrektur der Windgeschwindigkeit durchgeführt. Im Simulationszeitraum 2005/06 zeigten sich größere Abweichungen zwischen der gemessenen (Bulksampler) und simulierten Interzeption. Ursache war vermutlich die Entnahme mehrerer durch Prachtkäferbefall abgestorbener Bäume und das hierdurch notwendige Umsetzen einer Reihe der Bulksampler im Bestand in einen noch geschlossenen Bestandesteil. Der Wasserhaushalt für den Gesamtzeitraum ab 1988 wurde daher mit dem Bestandesniederschlag als treibender Variable (vorher: Freilandniederschlag) neu berechnet. Die 10/2004 neu installierten Tensiometer und TDR-Sonden in 110 cm Tiefe wiesen auf eine tiefgründigere Austrocknung hin als ursprünglich bekannt (maximale Untersuchungstiefe vorher

90 cm (Tens.) bzw. 60 cm (TDR)). Einige Modellparameter (v.a. Wurzeltiefe und -verteilung) wurden daraufhin neu angepasst. Da die unerwartet starke Dynamik der TDR-Sonden in 110 Tiefe trotz der Parameteranpassungen durch das Modell zunächst nicht abgebildet werden konnte (Abbildung 6), wurden die Feld-pF-WG Kurven mit den Messwerten der Tensiometer- und der TDR-Sonden aus den Jahren 2006 bis 2008 vollständig neu angepasst und parametrisiert. In 110 cm Tiefe wurde außerdem die hydraulische Leitfähigkeit reduziert. Die Übereinstimmung mit den gemessenen Wassergehalten konnte damit deutlich verbessert werden. Ebenfalls stimmt der gemessene und simulierte Wasservorrat nun besser überein. Die Tiefensickerung wird jedoch weiterhin unterschätzt.

3.1.4 Hermeskeil Level II (Fichte)

Standort und Bestand

An der Fläche Hermeskeil stockt ein weitgehend geschlossenes, 88-jähriges (2012) Fichtenbaumholz mit zum Teil beträchtlicher Kronenverlichtung. Der Boden ist eine Podsol-Braunerde mit einer Hauptlage aus lösslehmführendem, grusführendem Lehm über einer Mittellage aus lösslehmführendem, grusführendem Lehm und einer Basislage aus Gruslehm über tiefem, grusführendem Lehm aus devonischem Sandstein. Die Fläche Hermeskeil ist in das bundesweite Bodendauerbeobachtungsflächen-Programm integriert. Eine eingehende Beschreibung der BDF Hermeskeil (Fläche Nr. 10) enthält DEHNER et al. 2011.

Die Fläche ist zugleich eine Level II-Fläche des europaweiten Forstlichen Umweltmonitorings (EU-Fläche 701). Das umfangreiche Messprogramm umfasst unter anderem kontinuierliche meteorologische Messungen an einer Waldklimastation, Depositionsmessungen im Freiland und im Waldbestand, Streufallmessungen und Sickerwasseranalysen in zwei verschiedenen Bodentiefen.

Datengrundlage und Modellparameter

_

Tabelle 14: Hermeskeil Level II, Datengrui Hermeskeil Level II, data basis m	ndlage Meteorologie und Bodenhydrologie. eteorology and soil hydrology.
Klimastation	Hermeskeil (FAWF-Nr. 207a701)
Lage der Klimastation	X GK2 : 2574284 Y GK2 : 5507008 Höhe über NN: 651 m; eben ca. 0,7 ha große Grasfläche inmitten eines großen, fichtendomi- nierten Waldgebietes im Hunsrück, Hoch- und Idarwald Klimastation liegt ca. 200 m östlich der Monitoringfläche
Messvariablen	LT, LF, WS, FNS, GS
Messsysteme FNS	Kippwaage, Pluvio, Hellmann, Bulksampler
Bestandesniederschlag	Bulksampler
Besonderheiten	Driftkorrektur der Windgeschwindigkeit
Zeitraum mit geprüften und lückenersetzten Daten (Tageswerte)	01.01.1988 – 31.12.2010
Modellantrieb Niederschlag	BNS
Windkorrekturfaktor (Coupmodel)	1
Bodensaugspannung	seit 2002: Einstichtensiometer in 54 cm Tiefe im gesunden und geschädigten Bestandesteil seit 2009: FAWF-Tensiometer in 50-83 cm Tiefe
Bodenwassergehalt	-
Datengrundlage Modellparameter Boden	Labor-pF-Kurve von 2005/06 (modifiziert), hydraulische Leitfähigkeiten invers optimiert

Tabelle 15:	Hermeskeil Level II, meteorologische Daten.							
	Hermeskell Level II, me	teorologic data.						
Jahr	LT (°C)	LF (%)	WS (m/s)	NS (mm/a)	(W/m²)			
1988	8,0	87	2,1	1188	113			
1989	7,7	82	1,9	1226	126			
1990	7,5	84	2,1	1208	125			
1991	7,0	81	2,0	1204	125			
1992	7,5	84	2,1	824	120			
1993	7,2	85	2,1	1119	118			
1994	8,4	87	2,1	1280	118			
1995	7,7	87	2,0	1280	123			
1996	6,0	86	2,0	1562	116			
1997	8,0	83	1,9	1329	115			
1998	7,8	86	2,1	1371	112			
1999	8,3	88	2,1	912	116			
2000	7,5	88	2,1	1023	112			
2001	6,5	88	2,2	957	114			
2002	6,7	87	2,4	1141	115			
2003	6,7	80	2,3	1311	140			
2004	5,5	87	2,4	1188	119			
2005	5,7	86	2,2	1060	122			
2006	6,3	84	2,4	1088	122			
2007	6,3	85	2,5	1188	120			
2008	5,6	86	2,4	1226	116			
2009	5,8	86	2,2	1208	119			
2010	4,5	86	2,2	1204	118			
Mittelwert	6,9	85	2,2	1172	119			

Tabelle 16:	Hermes Hermes	Hermeskeil Level II, Modellparameter Boden. Hermeskeil Level II, model parameters soil.							
Horizont	Tiefe	λ	Psie	Porosität	FK	PWP	nFK	K _{matrix}	K _{makro}
	(cm)	(-)	(hPa)	(%)	(Vol.%)	(Vol.%)	(Vol.%)	(m/d)	(m/d)
L, Of, Oh	0 - 8	0,16	9,66	76,0	59,3	24,6	34,7	3,00	10
Ahh, Ahu	8 - 20	0,13	9,29	63,5	50,5	25,3	25,2	0,20	10
Bvh	20 - 38	0,33	5,55	63,3	40,3	21,7	18,6	0,18	10
Bv1	38 - 53	0,17	4,29	58,2	41,4	20,2	21,3	0,15	10
Bv2	53 - 68	0,09	5,37	54,1	44,1	21,9	22,2	0,15	10
Cv, Cn	68 - 200	0,09	5,19	38,3	59,3	15,5	34,7	0,10	10

Tabelle 16:

Hermeskeil Level II, Modellparameter Vegetation. Tabelle 17: Hermeskeil Level II, model parameters vegetation.

bis 2005: 8,2 (Winter) - 9,0 (Sommer) ab 2005: 6,1 (Winter) - 6,7 (Sommer)
-
180
5
300
68
exp.
ја
0,6

* Parameter mit saisonaler und/oder jährlicher Variation

Ergebnisse

FAO-Referenzverdunstung und Klimatische Wasserbilanz

Tabelle 18:	Hermeskeil Level II, FAO-Referenzverdunstung und klimatische Wasserbilanz.						
	Hermeskeil Level II, FAO reference evapotranspir	ation and climatic water balance.					
Jahr	FAO-Referenzverdunstung (mm/a)	Klimatische Wasserbilanz (mm/a)					
1988	518,2	558,0					
1989	579,5	258,6					
1990	573,8	462,8					
1991	588,0	231,0					
1992	561,3	685,9					
1993	559,4	727,4					
1995	552,5	716,4					
1995	559,1	704,9					
1996	515,8	349,6					
1997	559,9	614,6					
1998	538,8	805,4					
1999	548,5	795,6					
2000	518,7	1121,5					
2001	513,5	881,6					
2002	508,6	931,2					
2003	651,9	305,3					
2004	515,3	547,8					
2005	528,7	445,9					
2006	553,7	644,5					
2007	535,7	840,7					
2008	511,2	736,6					
2009	523,1	589,9					
2010	524,6	617,4					
Summe	12539,9	14572,5					
Mittelwert	545,2	633,6					

Tabelle 19:Hermeskeil Level II, Bilanzkomponenten des Wasserhaushalts.
Hermeskeil Level II, components of the water balance.

Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption ²⁾ (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (mm)	Tiefen- sickerung (220 cm) (% des FNS)	Speicher- änderung (0-220 cm) (mm)
1992	1247,3	314,0	0,0	35,0	233,6	681,6	54,6 %	-16,8
1993	1286,8	349,5	0,0	39,7	224,9	551,5	42,9 %	121,2
1994	1268,9	336,0	0,0	35,2	221,5	760,2	59,9 %	-83,9
1995	1264,0	318,4	0,0	32,3	215,2	738,5	58,4 %	-40,4
1996	865,4	234,5	0,0	28,6	192,5	377,1	43,6 %	32,6
1997	1174,5	355,4	0,0	30,8	241,3	546,4	46,5 %	0,6
1998	1344,2	328,3	0,0	34,1	226,9	764,8	56,9 %	-10,0
1999	1344,1	360,7	0,0	30,3	219,0	669,0	49,8 %	65,0
2000	1640,2	411,7	0,0	31,8	190,2	1066,7	65,0 %	-60,2
2001	1395,1	318,4	0,0	30,4	198,4	832,5	59,7 %	15,4
2002	1439,8	341,3	0,1	29,3	170,5	861,3	59,8 %	37,3
2003	957,3	271,2	0,0	39,9	262,3	441,5	46,1 %	-57,6
2004	1074,4	288,1	0,0	31,5	181,4	546,1	50,8 %	27,2
2005	1004,9	279,8	3,6	32,6	204,9	456,8	45,5 %	27,0
2006	1198,2	258,5	0,0	32,6	219,5	750,1	62,6 %	-62,5
2007	1376,3	398,4	0,0	38,7	192,2	775,5	56,3 %	-28,4
2008	1247,8	305,8	12,9	38,3	178,1	734,3	58,8 %	-21,5
2009	1113,0	256,5	17,9	36,0	183,7	606,7	54,5 %	12,2
2010	1142,0	229,7	51,0	40,2	194,6	637,0	55,8 %	-10,5
Summe	23384,0	5956,3	85,6	647,2	3950,8	12797,5	-	-33,3
Mittelwert	1230,7	313,5	4,5	34,1	207,9	673,6	54,7 %	-2,2

¹⁾ windkorrigiert ²⁾ Messwert

Abbildung 15: Hermeskeil Level II, Bilanzkomponenten des Wasserhaushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung. Hermeskeil Level II, components of the water balance; top: values in mm/a; bottom: relative amounts (percent of bulk precipitation); DeltaS: change of storage.

Abbildung 17: Hermeskeil Level II, simulierte Bodenwasserverfügbarkeit im Wurzelraum und Wasserstressindikatoren.

Hermeskeil Level II, simulated soil water availability in the rooting zone and water stress indicators.

Besonderheiten

Der LAI des Bestandes wurde entsprechend der Durchforstung im September 2005 angepasst. Die schaft-, einbauwinkel- und befüllungskorrigierten Messwerte der Bodensaugspannung wurden einer zusätzlichen empirischen Offsetkorrektur unterzogen. Ab etwa März 2007 zeichnet sich eine Verbesserung der Datenqualität der Tensiometer ab. Ab diesem Zeitpunkt fällt auch die Übereinstimmung zwischen simulierten und gemessenen Werten teilweise besser aus.

3.1.5 Johanniskreuz Level II (Kiefer mit Buche)

Standort und Bestand

Am Standort Johanniskreuz stockt ein lichter, zum Teil auch lückiger, 137-jähriger (2012) Kiefernaltbestand mit einem Buchenzwischen- und unterstand. Der Boden ist ein Podsol mit einer Oberlage aus Schuttsand über einer Hauptlage aus grusführendem Sand und einer Basislage aus Buntsandstein.

Die Fläche Johanniskreuz ist in das bundesweite Bodendauerbeobachtungsflächen-Programm integriert. Eine eingehende Beschreibung der BDF Merzalben (Fläche Nr. 3) enthält DEHNER et al. 2011. Die Fläche ist zugleich eine Level II-Fläche des europaweiten Forstlichen Umweltmonitorings (EU-Fläche 707). Meteorologischen Messungen erfolgen an der Waldklimastation und der ZIMEM-Station der nahegelegenen Level II-Fläche Merzalben. Im Kiefernbestand erfolgen Streufallmessungen, Depositionsmessungen und Sickerwasseruntersuchungen in zwei Bodentiefen.

Datengrundlage und Modellparameter

Am Level II - Standort Johanniskreuz befindet sich keine Freiland-Klimastation. Hier wurden die Daten der ca. 6 km südwestlich auf gleicher Höhe über NN gelegenen Station Merzalben ("FAWF-Nr. 329a703") verwendet (Tabelle 8 und Tabelle 9).

Tabelle 20:	Johanniskreuz Level II, Datengrundlage Bodenhydrologie. Johanniskreuz Level II, data basis soil hydrology.						
	Bodensaugspannung	seit 2002: Einstichtensiometer in 90 cm Tiefe seit 2006: Tensiologger in 90 cm Tiefe					
	Bodenwassergehalt	-					
	Bodentemperatur	seit 2006: Fühler in 90 cm Tiefe					
Datengru	undlage Modellparameter Boden	0-35 cm Tiefe: Labor-pF-Kurve von 2004/05 (modifiziert), ab 35 cm Tiefe skelettkorrigierte pF-Kurven der Kompen- sationsversuchsfläche Hochspeyer, Laborkmatrix-Werte der Kom- pensationsversuchsfläche Hochspeyer					

Johanniskreuz Level II

	Jonanni	skreuz Leve	el II, model j	Darameters	soil.				
Horizont	Tiefe	λ	Psie	Porosität	FK	PWP	nFK	K _{matrix}	K _{makro}
	(cm)	(-)	(hPa)	(%)	(Vol.%)	(Vol.%)	(Vol.%)	(m/d)	(m/d)
Auflage	0 - 10	0,14	4,33	62,4	41,94	22,3	19,64	2,1	10
Ahe	10 - 20	0,17	7,18	51,2	35,32 ¹⁾	16,4 ¹⁾	18,92 ¹⁾	2,2	10
Ae	20 - 35	0,28	9,07	40,5	23,02 ¹⁾	5,3 ¹⁾	17,72 ¹⁾	2,2	10
Bhs	35 - 40	0,22	4,07	47,3	27,6 ¹⁾	10,3 ¹⁾	17,3 ¹⁾	0,9	10
Bsv	40 - 70	0,22	4,02	47,3	27,6 ¹⁾	10,3 ¹⁾	17,3 ¹⁾	0,9	10
Bv-Cv	70 - 85	0,22	4,01	44,4	25,9 ¹⁾	9,7 ¹⁾	16,2 ¹⁾	0,9	10
Cv, Cn	85 - 110	0,22	3,99	38,5	22,5 ¹⁾	8,4 ¹⁾	14,1 ¹⁾	0,5	10

Tabelle 21:Johanniskreuz Level II, Modellparameter Boden.
Johanniskreuz Level II, model parameters soil.

¹⁾ Im Rahmen der Modellaufstellung skelettkorrigiert

Tabelle 22:	Johanniskreuz Level II, Modellparameter Vegetatio Johanniskreuz Level II, model parameters vegetation.	n.					
Blattflächenindex (m²/m²) 7							
Interzeptionska	ıpazität (mm/LAI)	-					
r _s (Vegetations	periode) (s/m)	170					
kritischer Wass	ergehalt bei Luftmangel (Vol.%)	1					
kritische Saugs	pannung bei Austrocknung (hPa)	300					
maximale Wurz	zeltiefe (cm ab Oberkante Auflage)	130					
Wurzelverteilu	ng	exp.					
kompensatoris	che Wasseraufnahme bei Wasserstress	ја					
Intensität komp	oensatorische Wasseraufnahme (-)	1					

Ergebnisse

FAO-Referenzverdunstung und Klimatische Wasserbilanz identisch mit Abschnitt 3.1.3 Merzalben, Tabelle 12.

Abbildung 20: Johanniskreuz Level II, gemessene und simulierte Bodentemperatur. Johanniskreuz Level II, measured and simulated soil temperature.

Johanniskreuz Level II

	,		,	,				
Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption ²⁾ (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (mm)	Tiefen- sickerung (220 cm) (% des FNS)	Speicher- änderung (0-220 cm) (mm)
1988	1119,9	-	0,0	55,6	253,6	526,6	47,0	-
1989	950,7	-	0,0	82,8	322,3	290,0	30,5	-
1990	882,9	-	0,0	82,4	309,6	249,0	28,2	-
1991	746,2	-	0,0	71,3	270,4	250,9	33,6	-
1992	928,2	178,5	0,0	71,3	298,3	402,0	43,3	-22,0
1993	1002,6	247,3	0,0	69,1	267,4	324,8	32,4	94,0
1994	1030,4	193,9	0,0	66,8	279,6	552,6	53,6	-62,6
1995	1232,3	304,9	0,0	60,8	282,3	576,9	46,8	7,4
1996	820,9	200,6	0,0	58,3	224,0	350,5	42,7	-12,5
1997	999,8	279,4	0,0	70,8	283,5	355,9	35,6	10,2
1998	1128,6	281,3	0,3	62,3	269,3	510,2	45,2	5,1
1999	1134,8	323,8	0,0	65,5	271,1	424,7	37,4	49,7
2000	1244,5	372,7	0,0	70,8	276,4	575,9	46,3	-51,3
2001	1245,0	390,0	0,0	66,6	269,0	525,2	42,2	-5,8
2002	1210,6	243,6	0,0	71,9	272,2	591,8	48,9	31,1
2003	724,7	237,2	0,0	94,7	255,6	266,7	36,8	-129,5
2004	953,1	225,4	0,0	75,8	284,8	273,2	28,7	94,0
2005	846,0	198,4	0,0	75,0	295,4	342,5	40,5	-65,2
2006	1048,3	278,3	0,0	80,2	306,1	358,6	34,2	25,1
2007	1040,3	295,1	0,0	81,3	275,0	375,6	36,1	13,4
2008	952,5	221,6	0,0	73,5	282,3	367,8	38,6	7,3
2009	1031,6	291,3	0,0	59,7	257,5	379,3	36,8	43,8
2010	1235,2	313,9		78,8	287,7	519,3	42,0	35,5
Summe ³⁾	19809,4	5077,0	0,3	1353,3	5237,7	8073,4	-	67,7
Mittelwert ³⁾	1042,6	267,2	0,0	71,2	275,7	424,9	40,4	3,6

Tabelle 23:	Johanniskreuz Level II, Bilanzkomponenten des Wasserhaushalts.

Johanniskreuz Level II, components of the water balance.

¹⁾ windkorrigiert ²⁾ Messwert ³⁾ 1992 - 2010

Abbildung 21: Johanniskreuz Level II, Bilanzkomponenten des Wasserhaushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung.

Johanniskreuz Level II, components of the water balance; top: values in mm/a; bottom: relative amounts (percent of bulk precipitation); DeltaS: change of storage.

Johanniskreuz Level II

Johanniskreuz Level II, simulated soil water availability in the rooting zone and water stress indicators.

Besonderheiten

In Johanniskreuz ist neben dem Kiefernhauptbestand ein Buchenzwischen- und -unterstand vorhanden. Der Stammabfluss der Buchen wird allerdings nicht separat erfasst. Hier wurde angenommen, dass der gemessene Bestandesniederschlag, bedingt durch "Vorbeileitung" des Niederschlags an den Bulk-Samplern durch Stammabfluss an den Buchenstämmen, etwas zu niedrig ausfällt. Zur Korrektur wurden die gemessenen Bestandesniederschläge im Anhalt an Messungen an unterständigen Buchen der Fläche Merzalben im Zeitraum 1987 bis 1990 um 4 % erhöht. Bei der Kalibrierung des Blattflächenindex zeigte sich, dass eine Berücksichtigung des Buchenzwischen- und -unterstands durch eine innerjährige Variation des LAI nicht zu einer verbesserten Abbildung der Bodensaugspannung beiträgt. In Johanniskreuz wurde daher ein einheitlicher Blattflächenindex für den Winter und Sommer festgelegt.

2004/05 wurden für die Level II-Fläche Johanniskreuz durch die FAWF erstmals Labor-pF-Kurven für die Auflage (Oh-Lage) sowie für die Mineralbodentiefen 1 - 5 cm (Ahe-Horizont) und 11 - 15 cm (Ae-Horizont) bestimmt. In größeren Bodentiefen konnte aufgrund des hohen Skelettgehaltes keine Probenahme durchgeführt werden. Bei der Neuparametrisierung der bodenphysikalischen Eigenschaften im Simulationsmodell wurde daher zunächst die organische Auflage als neuer Horizont ergänzt sowie die pF-Kurven der obersten beiden Mineralbodenhorizonte (Ahe, Ae) durch die neu bestimmten Kurven ersetzt. Für alle weiteren Horizonte (Bhs, Bsv, Bv-Cv, Cv) wurden auch bei der Neuparametrisierung die skelettkorrigierten LaborpF-Kurven der Kompensationsversuchsfläche

Hochspeyer übernommen. Die Notwendigkeit für die Skelettkorrektur ergab sich aus höheren Skelettgehalten im Boden der Level II-Fläche Johanniskreuz gegenüber der Kompensationsversuchsfläche in Hochspeyer.

Die maximale Wurzeltiefe am Standort Johanniskreuz beträgt laut Profilbeschreibung 130 cm Mineralbodentiefe. Ein Vergleich der simulierten Bodensaugspannungen in 85 – 110 cm Tiefe mit den seit Sommer 2002 vorliegenden Messwerten von Einstichtensiometern aus 90 cm Tiefe zeigte allerdings eine deutliche Überschätzung der sommerlichen Austrocknung in der Simulation. Infolgedessen wurde die für forstliche Standorte übliche exponentielle Abnahme der Wurzeldichte mit der Tiefe verwendet. Als Maximaltiefe der Wurzeln wurde 100 cm Mineralbodentiefe (110 cm Modelltiefe) angenommen. Der Tensiologger zeigt im Gegensatz zu den Einstichtensiometern keine Tendenz zum Wasserstau im Boden. Einstichtensiometerwerte unterhalb von 0 hPa in Iohanniskreuz sind als unplausibel zu werten.

Seit 2007 misst der Tensiologger eine deutlich stärkere Austrockung als die Einstichtensiometer (Abbildung 19). Die Simulation unterschätzt in den Jahren 2007 und 2009 die Austrocknung sowohl gegenüber dem Tensiologger als auch den Einstichtensiometern. 2008 wird die Austrockung durch die Simulation gegenüber den Tensiologger ebenfalls unterschätzt. Mit den Einstichtensiometern stimmt die Simulation dagegen nahezu überein.

3.1.6 Kirchheimbolanden Level II (Buche)

Standort und Bestand

An der Fläche Kirchheimbolanden stockt ein geschlossenes, ca. 91-jähriges (2012) Buchenbaumholz mit einzelnen Lärchen. Der Boden ist eine Lockerbraunerde mit einer Hauptlage aus Gruslehm über einer Basislage aus Schuttgrus über tiefem pleistozänem Grusschutt aus Rhyolith. Die Fläche Kirchheimbolanden ist in das bundesweite Bodendauerbeobachtungsflächen-Programm integriert. Eine eingehende Beschreibung der BDF Kirchheimbolanden (Fläche Nr. 5) enthält DEHNER et al. 2011. Die Fläche ist zugleich eine Level II-Fläche des europaweiten Forstlichen Umweltmonitorings (EU-Fläche 703). Das umfangreiche Messprogramm umfasst unter anderem meteorologische Messungen an einer Waldklimastation, Depositionsmessungen im Freiland und im Waldbestand, Streufallmessungen und Sickerwasseranalysen in zwei verschiedenen Bodentiefen

Datengrundlage und Modellparameter

Tabelle 24: Kirchheimbolanden Level II, Dar Kirchheimbolanden Level II, data I	Kirchheimbolanden Level II, Datengrundlage Meteorologie und Bodenhydrologie. Kirchheimbolanden Level II, data basis meteorology and soil hydrology.						
Klimastation	Kirchheimbolanden (FAWF-Nr. 323a705)						
Lage der Klimastation	X GK2 : 2638816 Y GK2 : 5501365 Höhe über NN: 591 m; N-Hang, 5 % Neigung ca. 1,0 ha große mit niedrigen Büschen und Naturverjüngung bestockte Fläche inmitten eines großen, Buchen-dominierten Waldgebietes auf dem Donnersberg Klimastation liegt ca. 200 m östlich der Monitoringfläche						
Messvariablen	LT, LF, WS, FNS, GS						
Messsysteme FNS	Kippwaage, Pluvio, Hellmann, Bulksampler						
Bestandesniederschlag	Bulksampler, Stammabflussmesssysteme						
Besonderheiten	Driftkorrektur der Windgeschwindigkeit						
Zeitraum mit geprüften und lückenersetzten Daten (Tageswerte)	01.01.1988-31.12.2010						
Modellantrieb Niederschlag	BNS						
Windkorrekturfaktor (Coupmodel)	1						
Bodensaugspannung	seit 2002: Einstichtensiometer in 60 cm Tiefe seit 2009: FAWF-Tensiometerer in 80 cm Tiefe						
Bodenwassergehalt	-						
Datengrundlage Modellparameter Boden	Pedotransferfunktionen						

		. 3			
Jahr	LT (°C)	LF (%)	WS (m/s)	FNS (mm/a)	GS (W/m²)
1988	7,9	85	1,4	799	111
1989	8,5	83	1,2	578	119
1990	8,4	84	1,4	650	123
1991	7,5	83	1,3	536	123
1992	8,4	84	1,3	682	121
1993	7,6	84	1,4	796	121
1994	8,9	87	1,4	798	121
1995	8,1	87	1,3	857	122
1996	6,4	87	1,1	677	113
1997	8,0	85	1,1	633	112
1998	8,0	86	1,4	794	94
1999	8,6	86	1,6	794	109
2000	9,0	86	1,6	959	108
2001	8,4	87	1,5	990	106
2002	9,0	86	1,5	935	125
2003	9,3	80	1,5	551	140
2004	8,4	86	1,6	703	127
2005	8,9	86	1,5	747	126
2006	9,4	86	1,6	699	128
2007	9,4	86	1,6	875	126
2008	9,0	86	1,5	816	139
2009	9,2	85	1,6	800	136
2010	7,9	86	1,4	837	134
Mittelwert	8,4	85	1,4	761	121

Tabelle 25: Kirchheimbolanden Level II, meteorologische Daten.

Kirchheimbolanden Level II, meteorologic data.

			-							
Horizont	Tiefe	m	n	Alpha	Porosität	FK	PWP	nFK	K _{matrix}	K _{makro}
	(cm)	(-)	(-)	(1/cm)	(%)	(Vol.%)	(Vol.%)	(Vol.%)	(m/d)	(m/d)
Auflage	0 - 5	0,15	1,18	0,80	79,2	39,9	0,1	39,8	10,00	10
Ah	5 - 16	0,14	1,16	0,04	17,6	14,7 ¹⁾	6,4 ¹⁾	8,3 ¹⁾	0,17	10
Bv	16 - 60	0,18	1,22	0,02	16,8	14,6 ¹⁾	4,8 ¹⁾	9,8 ¹⁾	0,05	10
BvCv	60 - 130	0,22	1,29	0,02	8,2	7,0 ¹⁾	1,7 ¹⁾	5,4 ¹⁾	0,03	10

Tabelle 26:Kirchheimbolanden Level II, Modellparameter Boden.Kirchheimbolanden Level II, model parameters soil.

1) Im Rahmen der Modellaufstellung skelettkorrigiert

Tabelle 27:Kirchheimbolanden Level II, Modellparameter Vegetation.

Kirchheimbolanden Level II, model parameters vegetation.

Blattflächenindex (m²/m²)*	bis 2008: 1,5 (Winter) - 9,0 (Sommer) ab 2008: 0,9 (Winter) - 5,2 (Sommer)
Interzeptionskapazität (mm/LAI)	-
r _s (Vegetationsperiode) (s/m)	170
kritischer Wassergehalt bei Luftmangel (Vol.%)	2
kritische Saugspannung bei Austrocknung (hPa)	300
maximale Wurzeltiefe (cm ab Oberkante Auflage)	130
Wurzelverteilung	exp.
kompensatorische Wasseraufnahme bei Wasserstress	ja
Intensität kompensatorische Wasseraufnahme (-)	0,6

* Parameter mit saisonaler und/oder jährlicher Variation

Ergebnisse

FAO-Referenzverdunstung und Klimatische Wasserbilanz

Tabelle 28:	Kirchheimbolanden Level II, FAO-Referenzverdunstung und klimatische Wasserbilanz.						
	Kirchheimbolanden Level II, FAO reference eva	apotranspiration and climatic water balance.					
Jahr	FAO-Referenzverdunstung (mm/a)	Klimatische Wasserbilanz (mm/a)					
1988	535,8	303,6					
1989	581,1	25,5					
1990	582,5	100,2					
1991	564,0	-1,6					
1992	584,5	131,3					
1993	578,7	256,8					
1995	563,9	274,1					
1995	553,0	346,5					
1996	510,3	200,7					
1997	530,0	134,8					
1998	504,0	329,8					
1999	555,6	278,5					
2000	556,5	450,2					
2001	540,1	499,3					
2002	548,8	432,6					
2003	657,2	-78,5					
2004	561,3	177,1					
2005	568,3	242,6					
2006	582,1	152,3					
2007	558,2	360,9					
2008	583,8	273,3					
2009	580,8	259,6					
2010	565,6	313,1					
Summe	12946,0	5462,6					
Mittelwert	562,9	237,5					

104-

105-

106-

107

103

102-

108-

1/10-

109

194

193

132

1/95-

198

1/97

1,98-

189-

ģ

Ę

	i chi chi i ci	mbolanden E	evern, comp		mater batan			
Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption ²⁾ (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (mm)	Tiefen- sickerung (210 cm) (% des FNS)	Speicher- änderung (0-210 cm) (mm)
1992	715,9	173,7	0,0	53,6	225,3	268,2	37,5 %	-4,9
1993	835,5	186,1	0,0	52,1	217,5	356,5	42,7 %	23,2
1994	838,0	176,6	0,0	47,0	182,5	439,4	52,4 %	-7,4
1995	899,5	192,6	0,0	37,4	194,4	472,9	52,6 %	2,1
1996	711,0	163,1	0,0	35,7	189,4	339,7	47,8 %	-16,9
1997	664,8	162,6	0,0	43,4	215,4	237,4	35,7 %	6,0
1998	833,8	221,8	0,0	51,4	186,7	376,2	45,1 %	-2,2
1999	834,1	201,7	0,0	52,7	223,9	322,8	38,7 %	32,8
2000	1006,6	215,2	0,0	53,3	210,3	553,6	55,0 %	-25,8
2001	1039,4	257,0	0,0	56,3	225,9	508,5	48,9 %	-8,4
2002	981,4	197,7	0,0	29,0	190,7	551,6	56,2 %	12,6
2003	578,7	172,5	0,0	33,8	218,0	161,2	27,9 %	-6,9
2004	738,4	200,1	0,0	33,9	209,9	294,3	39,9 %	0,3
2005	784,6	130,4	0,0	34,3	204,4	389,4	49,6 %	26,0
2006	734,4	118,5	0,0	27,1	201,8	406,5	55,4 %	-19,6
2007	919,1	185,7	0,0	31,9	205,7	510,4	55,5 %	-14,6
2008	857,0	111,6	0,0	44,3	215,7	488,5	57,0 %	-3,1
2009	840,4	30,2	0,0	42,4	223,8	529,2	63,0	14,8
2010	878,7	178,0	2,4	53,2	201,9	466,2	53,1	-23,0
Summe	15691,3	3275,2	2,4	812,9	3943,1	7672,5	-	-27,8
Mittelwert	825,9	172,4	0,1	42,8	207,5	403,8	48,9	-1,9

 Tabelle 29:
 Kirchheimbolanden Level II, Bilanzkomponenten des Wasserhaushalts.

 Kirchheimbolanden Level II. components of the water balance.

¹⁾ windkorrigiert ²⁾ Messwert

Abbildung 26: Kirchheimbolanden Level II, Bilanzkomponenten des Wasserhaushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung.

Kirchheimbolanden Level II, components of the water balance; top: values in mm/a; bottom: relative amounts (percent of bulk precipitation); DeltaS: change of storage.

Abbildung 27: Kirchheimbolanden Level II, simulierter Bodenwasservorrat im Wurzelbereich. Kirchheimbolanden Level II, simulated soil water storage in the rooting zone.

Abbildung 28: Kirchheimbolanden Level II, simulierte Bodenwasserverfügbarkeit im Wurzelraum und Wasserstressindikatoren.

Kirchheimbolanden Level II, simulated soil water availability in the rooting zone and water stress indicators.

Besonderheiten

Die aus den gemessenen Freilands- und Bestandesniederschlägen berechnete Interzeption ist seit 2005 sehr niedrig, was allerdings keinen Einfluss auf Simulationsergebnisse hat, da die Messwerte des Bestandesniederschlags (Kronendurchlass und Stammabfluss) als Modell-Eingangsgröße verwendet werden. Im Jahr 2009 unterschätzt das Modell die gemessenen Tensionen, was ein Hinweis auf einen eventuell zu hohen Messwert des Bestandesniederschlages ist (Boden wird zu feucht simuliert, Abbildung 25). Eine Unterschätzung des Freilandniederschlags, was ebenfalls niedrige "Messwerte" der Interzeption ergeben würde, ist somit unwahrscheinlich.

Für die Level II–Fläche Kirchheimbolanden konnten durch die FAWF aufgrund des hohen Skelettgehalts bisher keine Labor-pF-Kurven ermittelt werden. Die Abschätzung der Retentionseigenschaften erfolgte daher mit Hilfe von Pedotransferfunktionen nach Wösten et al. (1999). Der LAI des Bestandes wurde entsprechend der Durchforstung im März 2008 angepasst.

Neuhäusel-Bims Level II

3.1.7 Neuhäusel-Bims Level II (Buche)

Standort und Bestand

An der Fläche Neuhäusel-Bims stockt ein geschlossenes, ca. 120-jähriges (2012) Buchenaltholz. Der Boden ist eine Lockerbraunerde mit einer Hauptlage aus bimsaschereichem Lehm über einer Mittellage aus bimsaschereichem Sand aus Bimslapilli über sehr tiefem lösslehmreichem devonischem Tonschluff.

Die Fläche Neuhäusel-Bims ist in das bundesweite Bodendauerbeobachtungsflächen-Programm integriert. Eine eingehende Beschreibung der BDF Neuhäusel I (Fläche Nr. 13) enthält DEHNER et al. 2011. Die Fläche ist zugleich eine Level II-Fläche des europaweiten Forstlichen Umweltmonitorings (EU-Fläche 704). Das umfangreiche Messprogramm enthält unter anderem meteorologische und Luftschadstoffmessungen an einer Station des Zentralen Immissionsmessnetzes (ZIMEN), Depositionsmessungen im Freiland und im Waldbestand, Streufallmessungen und Sickerwasseranalysen in zwei verschiedenen Bodentiefen.

Datengrundlage und Modellparameter

Tabelle 30:Neuhäusel-Bims Level II, DateNeuhäusel-Bims Level II, data ba	Neuhäusel-Bims Level II, Datengrundlage Meteorologie und Bodenhydrologie. Neuhäusel-Bims Level II, data basis meteorology and soil hydrology.						
Klimastation	Neuhäusel (ZIMEN 130)						
Lage der Klimastation	X GK2 : 2622974 Y GK2 : 5589034 Höhe über NN: 539 m, eben ca. 1,2 ha große Grasfläche inmitten eines großen, fichten- und buchendominierten Waldgebietes im Niederwesterwald. Die Station des Zentralen Immissionsmessnetzes (ZIMEN) liegt ca. 2,3 km nord-nord-westlich der Monitoringfläche und ca. 150 m höher						
Messvariablen	LT, LF, WS, FNS, GS						
Messsysteme FNS	Kippwaage, Pluvio, Hellmann, Bulksampler						
Bestandesniederschlag	Bulksampler, Stammabflussmesssysteme						
Besonderheiten	-						
Zeitraum mit geprüften und lückenersetzten Daten (Tageswerte)	01.01.1988-31.12.2010						
Modellantrieb Niederschlag	BNS						
Windkorrekturfaktor (Coupmodel)	1						
Bodensaugspannung	1996 - 2005: Saugkerzen in 10 - 60 cm Tiefe seit 2002: Einstichtensiometer in 90 cm Tiefe seit 2009: FAWF-Tensiometer in 90 cm Tiefe						
Bodenwassergehalt	-						
Datengrundlage Modellparameter Boden	Labor-pF-Kurve und Labor-k _{matrix} -Werte						

Jahr	LT (°C)	LF (%)	WS (m/s)	FNS (mm/a)	GS (W/m²)
1988	8,0	83	2,1	881	104
1989	9,0	80	2,1	773	118
1990	8,5	80	2,2	751	109
1991	7,4	78	2,2	690	121
1992	8,3	80	2,2	943	117
1993	7,5	80	2,3	1034	115
1994	8,6	81	2,4	1008	110
1995	8,2	83	2,3	898	110
1996	6,4	83	2,2	732	112
1997	8,4	80	2,2	766	118
1998	8,1	81	2,3	1216	104
1999	8,8	81	2,2	1053	117
2000	8,9	83	2,1	1060	107
2001	7,9	85	2,0	1144	110
2002	8,4	83	2,0	1079	111
2003	8,7	77	2,0	750	132
2004	7,7	84	2,0	1038	114
2005	8,2	83	1,9	958	118
2006	8,7	83	2,0	922	122
2007	8,8	80	2,1	996	120
2008	8,2	80	2,0	941	118
2009	8,3	79	2,0	980	120
2010	7,0	81	1,9	942	116
Mittelwert	8,2	81	2,1	937	115

Tabelle 31: Neuhäusel-Bims Level II, meteorologische Daten.

Neuhäusel-Bims Level II, meteorologic data.

Tabelle 32: Neuhäusel-Bims Level II, Modellparameter Boden. Neuhäusel-Bims Level II, model parameters soil.

Horizont	Tiefe	λ	Psie	Porosität	FK	Ρ\λ/Ρ	nFK	к	к
TIONZOIIL	THEFE	70	1 510	TOTOSILUL		1 001		* matrix	makro
	(cm)	(-)	(hPa)	(%)	(Vol.%)	(Vol.%)	(Vol.%)	(m/d)	(m/d)
Ah, Bv1	0 - 5	0,21	16,50	76,2	57,0 ¹⁾	27,9 ¹⁾	29,1 ¹⁾	1,77	1,77
Bv1	5 - 25	0,21	13,92	69,5	49,0 ¹⁾	24,3 ¹⁾	24,7 ¹⁾	4,14	4,14
Bv2	25 - 50	0,65	13,58	67,5	42,5 ¹⁾	24,4 ¹⁾	18,1 ¹⁾	4,76	4,76
Bv2, Bv3	50 - 80	0,61	11,36	62,7	41,0 ¹⁾	24,0 ¹⁾	17,0 ¹⁾	4,09	4,09
Bv3	80 - 110	0,12	1,64	60,0	37,5 ¹⁾	13,4 ¹⁾	24,1 ¹⁾	1,88	1,88
Bv3	110 - 140	0,57	4,90	64,5	38,5 ¹⁾	14,1 ¹⁾	24,4 ¹⁾	1,88	1,88
Bv3	> 140	0,03	0,10	53,0	31,5 ¹⁾	18,5 ¹⁾	13,0 ¹⁾	1,88	1,88

¹⁾ Im Rahmen der Modellaufstellung skelettkorrigiert

Neuhäusel-Bims Level II

Tabelle 33: Neuhäusel-Bims Level II, Modellparameter Vegetation.

Neuhäusel-Bims Level II, model parameters vegetation.

Blattflächenindex (m²/m²)*	1,5 (Winter) - 9,5 (Sommer)
Interzeptionskapazität (mm/LAI)	-
r _s (Vegetationsperiode) (s/m)	130
kritischer Wassergehalt bei Luftmangel (Vol.%)	1
kritische Saugspannung bei Austrocknung (hPa)	300
maximale Wurzeltiefe (cm ab Oberkante Auflage)	165
Wurzelverteilung	exp.
kompensatorische Wasseraufnahme bei Wasserstress	ја
Intensität kompensatorische Wasseraufnahme (-)	1

* Parameter mit saisonaler und/oder jährlicher Variation

Ergebnisse

FAO-Referenzverdunstung und Klimatische Wasserbilanz

Tabelle 34:	Neuhäusel-Bims Level II, FAO-Referenzverdur Neuhäusel-Bims Level II, FAO reference evapotra	nstung und klimatische Wasserbilanz. Inspiration and climatic water balance.
Jahr	FAO-Referenzverdunstung (mm/a)	Klimatische Wasserbilanz (mm/a)
1988	534,8	390,1
1989	623,4	188,6
1990	606,8	181,3
1991	615,5	109,4
1992	627,0	362,9
1993	609,1	476,1
1995	601,7	456,4
1995	587,6	355,6
1996	554,2	214,1
1997	625,1	179,5
1998	571,6	705,3
1999	631,9	473,9
2000	575,7	537,7
2001	555,1	646,2
2002	557,1	576,0
2003	681,2	106,5
2004	555,1	534,9
2005	578,0	427,7
2006	602,3	365,4
2007	617,5	428,0
2008	607,9	380,0
2009	619,3	409,4
2010	602,7	386,7
Summe	13740,5	8891,9
Mittelwert	597,4	386,6

Abbildung 30: Neuhäusel-Bims Level II, gemessene und simulierte Bodensaugspannung (stammfern). Neuhäusel-Bims Level II, measured and simulated soil water suction (in a distance of the trees).

Neuhäusel-Bims Level II

Tabelle 35: Neuhäusel-Bims Level II, Bilanzkomponenten des Wasserhaushalts (stammfern).

Neuhäusel-Bims Level II, components of the water balance (in a distance of the trees).

Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption ²⁾ (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (mm)	Tiefen- sickerung (265 cm) (% des FNS)	Speicher- änderung (0-265 cm) (mm)
1988	924,9		0,0	78,7	280,6	255,5	27,6	
1989	812,0		0,0	113,6	325,3	150,7	18,6	
1990	788,1		0,0	122,7	301,8	46,7	5,9	
1991	724,9		0,0	118,6	268,5	75,7	10,4	
1992	989,9	309,1	0,1	116,2	366,5	221,9	22,4	-23,8
1993	1085,2	373,8	1,4	117,0	314,5	219,8	20,3	58,9
1994	1058,0	342,4	0,0	104,9	341,5	291,8	27,6	-22,5
1995	943,2	305,9	0,0	84,4	307,4	293,8	31,1	-48,2
1996	768,3	236,8	1,2	90,3	376,9	139,7	18,2	23,4
1997	804,6	277,6	0,1	119,1	316,2	134,2	16,7	-42,6
1998	1276,9	432,8	0,0	110,4	339,7	348,2	27,3	45,9
1999	1105,8	407,2	0,0	106,6	341,5	243,7	22,0	6,9
2000	1113,4	387,1	0,0	112,4	319,0	312,2	28,0	-17,2
2001	1201,3	464,6	0,0	71,1	304,6	380,5	31,7	-19,5
2002	1133,1	265,3	8,8	118,4	292,6	373,8	33,0	74,2
2003	787,7	275,3	1,5	154,3	317,6	132,7	16,8	-93,7
2004	1090,0	353,2	0,2	106,5	292,7	271,0	24,9	66,5
2005	1005,6	348,1	0,0	95,5	330,0	251,7	25,0	-19,6
2006	967,7	349,7	0,0	74,6	318,0	250,8	25,9	-25,4
2007	1045,5	335,0	0,0	148,6	341,8	203,2	19,4	16,9
2008	988,0	290,6	0,2	104,5	358,9	224,8	22,8	9,1
2009	1028,7	331,0	25,3	132,1	351,7	183,6	17,8	5,1
2010	989,4	411,0	6,2	107,7	301,3	213,7	21,6	-50,4
Summe ³⁾	19382,4	6496,3	44,9	2074,5	6132,0	4690,9	-	-56,2
Mittelwert ³⁾	1020,1	341,9	2,4	109,2	322,7	246,9	23,8	-3,0

 $^{1)}$ windkorrigiert $^{2)}$ Messwert $^{3)}$ 1992 - 2010

Neuhäusel-Bims Level II

Abbildung 32: Neuhäusel-Bims Level II, Bilanzkomponenten des Wasserhaushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung (stammfern).

Neuhäusel-Bims Level II, components of the water balance; top: values in mm/a; bottom: relative amounts (percent of bulk precipitation); DeltaS: change of storage (in a distance of the trees).

Tabelle 36: Neuhäusel-Bims Level II, Bilanzkomponenten des Wasserhaushalts (stammnah).

Neuhäusel-Bims Level II, components of the water balance (close to the trees).

Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption ²⁾ (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (mm)	Tiefen- sickerung (265 cm) (% des FNS)	Speicher- änderung (0-265 cm) (mm)
1988	924.9	-	0.0	77.6	305.9	721.4	78.0	-
1989	812,0	-	0,0	113,7	376,6	485,8	59,8	-
1990	788,1	-	0,0	122,0	358,8	425,1	53,9	-
1991	724,9	-	0,0	118,5	325,2	442,4	61,0	-
1992	989,9	-223,3	0,5	112,6	366,0	761,7	76,9	-27,7
1993	1085,2	-199,6	6,5	113,0	334,8	739,2	68,1	91,4
1994	1058,0	-224,6	0,7	101,3	350,7	864,7	81,7	-34,8
1995	943,2	-196,4	0,0	80,5	342,3	718,3	76,2	-1,5
1996	768,3	182,5	10,6	85,5	278,1	608,8	79,2	-32,1
1997	804,6	-127,6	0,0	112,4	368,4	443,9	55,2	7,4
1998	1276,9	-248,2	0,0	106,2	339,9	1088,2	85,2	-9,1
1999	1105,8	-143,6	0,0	104,8	409,5	712,1	64,4	23,0
2000	1113,4	-181,9	0,0	99,1	324,0	896,0	80,5	-23,8
2001	1201,3	-127,0	0,0	67,7	309,1	992,1	82,6	-40,6
2002	1133,1	-430,7	27,5	111,4	292,0	1020,1	90,0	112,8
2003	787,7	-113,7	5,5	154,2	423,7	400,2	50,8	-82,1
2004	1090,0	-237,0	1,7	92,2	293,1	885,4	81,2	54,6
2005	1005,6	-175,1	2,8	92,4	331,6	745,0	74,1	8,9
2006	967,7	-137,5	0,0	73,6	336,5	778,2	80,4	-83,0
2007	1045,5	-235,9	0,0	145,9	342,7	779,1	74,5	13,7
2008	988,0	-265,8	0,9	91,2	364,8	790,9	80,0	6,1
2009	1028,7	-223,1	74,6	133,8	363,5	627,1	61,0	52,8
2010	989,4	-7,5	9,2	106,4	347,9	631,2	63,8	-97,7
Summe ³⁾	19382,4	-3681,0	140,5	1984,0	6518,7	14482,2	-	-61,8
Mittelwert ³⁾	1020,1	-193,7	7,4	104,4	343,1	762,2	74,0	-3,3

¹⁾ windkorrigiert ²⁾ Messwert ³⁾ 1992 - 2010

Neuhäusel-Bims Level II

Abbildung 33: Neuhäusel-Bims Level II, Bilanzkomponenten des Wasserhaushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung (stammnah).

Neuhäusel-Bims Level II, components of the water balance; top: values in mm/a; bottom: relative amounts (percent of bulk precipitation); DeltaS: change of storage (close to the trees).

20<mark>02</mark>

 Mittel

-20%

-40%

Tabelle 37: Neuhäusel-Bims Level II, Bilanzkomponenten des Wasserhaushalts (Gesamtfläche).

Neuhäusel-Bims Level II, components of the water balance (total area).

Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption ²⁾ (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (mm)	Tiefen- sickerung (265 cm) (% des FNS)	Speicher- änderung (0-265 cm) (mm)
1988	924.9	-	0.0	78.5	285.7	348.7	37.7	-
1989	812,0	-	0,0	113,6	335,6	217,7	26,8	-
1990	788,1	-	0,0	122,6	313,2	122,4	15,5	-
1991	724,9	-	0,0	118,6	279,8	149,0	20,5	-
1992	989,9	202,6	0,1	115,5	366,4	329,9	33,3	-24,6
1993	1085,2	259,1	2,4	116,2	318,5	323,7	29,8	65,4
1994	1058,0	229,0	0,2	104,2	343,3	406,3	38,4	-25,0
1995	943,2	205,5	0,0	83,6	314,4	378,7	40,2	-38,9
1996	768,3	152,9	3,1	89,4	277,1	233,5	30,4	12,3
1997	804,6	196,6	0,1	117,8	326,6	196,1	24,4	-32,6
1998	1276,9	296,6	0,0	109,6	339,7	496,2	38,9	34,9
1999	1105,8	297,0	0,0	106,2	355,1	337,3	30,5	10,1
2000	1113,4	273,3	0,0	109,7	320,0	428,9	38,5	-18,5
2001	1201,3	346,3	0,0	70,4	305,5	502,9	41,9	-23,7
2002	1133,1	126,1	12,5	117,0	292,4	503,1	44,4	81,9
2003	787,7	197,5	2,3	154,3	338,8	186,2	23,6	-91,4
2004	1090,0	235,1	0,5	103,6	292,7	393,9	36,1	64,1
2005	1005,6	243,4	0,6	94,9	330,3	350,4	34,8	-13,9
2006	967,7	252,2	0,0	74,4	321,7	356,3	36,8	-36,9
2007	1045,5	220,8	0,0	148,0	342,0	318,4	30,5	16,3
2008	988,0	179,3	0,3	101,8	360,1	338,0	34,2	8,5
2009	1028,7	220,2	35,1	132,5	354,0	272,3	26,5	14,6
2010	989,4	327,3	6,8	107,4	310,6	297,2	30,0	-59,9
Summe ³⁾	19382,4	4460,9	64,0	2056,5	6209,3	6649,2	643,2	-57,3
Mittelwert ³⁾	1020,1	234,8	3,4	108,2	326,8	350,0	33,9	-3,0

¹⁾ windkorrigiert ²⁾ Messwert ³⁾ 1992 - 2010

Neuhäusel-Bims Level II

Abbildung 34: Neuhäusel-Bims Level II, Bilanzkomponenten des Wasserhaushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung (Gesamtfläche).

Neuhäusel-Bims Level II, components of the water balance; top: values in mm/a; bottom: relative amounts (percent of bulk precipitation); DeltaS: change of storage (total area).

Abbildung 36: Neuhäusel-Bims Level II, simulierte Bodenwasserverfügbarkeit und Wasserstressindikatoren (stammfern).

Neuhäusel-Bims Level II, simulated soil water availability and water stress indicators (in a distance of the trees).

Neuhäusel-Bims Level II

Abbildung 37: Neuhäusel-Bims Level II, simulierter Luftgehalt pro Porenvolumen in den oberen 30 cm (AIR30) als Indikator für Sauerstoffmangel im Wurzelraum (stammfern).

Neuhäusel-Bims Level II, simulated air content per specific pore volume of the upper 30 cm (AIR30) as indicator of oxygen deficit in the rooting zone (in a distance of the trees).

Besonderheiten

Am Standort Neuhäusel wird der Stammabfluss der Buchen seit 1988 mit Hilfe eines automatischen Zählwerks (5 Bäume zusammengefasst) und seit 2010 einzelbaumweise mit Hilfe von Zählwerken und Datenloggern registriert. Dies ermöglichte die Untersuchung von Simulationsszenarien, welche nach der Entfernung zum Stamm und der räumlichen Verteilung der Versickerung des Bestandesniederschlags differenziert wurden:

- stammferner Bereich: Auf einem Teil der Fläche (Annahme: 80 %) versickert nur der Kronendurchlass, der Stammabfluss wird nicht berücksichtigt.
- stammnaher Bereich: Hier versickert zusätzlich zum Kronendurchlass der gemessene Stammabfluss (Annahme: 20 % der Gesamtfläche).

Die Wasserhaushaltsbilanz für die Gesamtfläche wurden anschließend durch die gewichtete Zusammenführung der beiden Teilflächen ermittelt. Der Bodenwasservorrat und die Stressindikatoren wurden nur anhand der stammfernen Simulationsergebnisse analysiert.

In Neuhäusel-Bims lagen bis zum Jahr 2001 zunächst keine Messwerte von Tensiometern oder TDR-Sonden vor, so dass damals die "erfolgreichen Probenahmen mit Saugkerzen" in die Modellkalibrierung integriert wurden. Eine erfolgreiche Wasserentnahme mit Saugkerzen ist gleichbedeutend mit der Aussage, dass die Bodensaugspannung im Bereich um die Kerze geringer ist als das anliegende Vakuum. Zur Beurteilung dieses Sachverhalts wurde folgendes Kriterium angewandt: Lieferten mindestens zwei Drittel der parallel eingebauten Saugkerzen (d. h. also mindestens 4 von 6 Saugkerzen einer Messtiefe) Bodenlösung, so wurde von einer Bodensaugspannung unterhalb des Vakuums der Saugkerzenanlage ausgegangen. Ein Kriterium von zwei Dritteln der Saugkerzen stellt sicher, dass auch mindestens eine der drei Saugkerzen im stammfernen Bereich, wo der Boden vielfach trockener ist als im stammnahen Bereich (drei Saugkerzen), Bodenlösung aufweist.

Ab dem Jahr 2002 konnten zusätzlich auch die neu installierten Einstichtensiometer zur Kalibrierung und Validierung des Modells herangezogen werden. Die gemessenen Bodensaugspannungen waren zunächst allerdings nur eingeschränkt plausibel. In den Folgejahren stieg mit zunehmender Messwertplausibilität auch die Übereinstimmung zwischen simulierten und gemessenen Tensionen. Allerdings wurde auch nach 2005 bei den Messwerten immer wieder 0 hPa unterschritten. Dies wäre ein Hinweis auf Wasserstau, der am Standort Neuhäusel Bims bodenbedingt nicht zu erwarten ist.

Im Jahr 2010 wurden durch die FAWF neue pF/WG-Laborwerte bestimmt. Aus den gemessenen Daten wurden durch UDATA bodenphysikalische Parameter nach BROOKS&COREY (1964) abgeleitet und das Wasserhaushaltsmodell entsprechend nachparametrisiert. Die gezeigten Ergenisse beruhen auf diesem nachparametrisierten Modell.

Neuhäusel-Quarzit Level II

3.1.8 Neuhäusel-Quarzit Level II (Buche)

Standort und Bestand

Die Fläche Neuhäusel-Quarzit liegt im gleichen Waldbestand wie die Fläche Neuhäusel-Bims (ca. 120-jähriges Buchenbaumholz). Der Boden ist eine Lockerbraunerde bis Braunerde aus z.T. bimsascheführendem Lehmschutt bis lösslehmreichem, grusführendem Schluff (Hauptlage) über grusführendem Lehm (Mittellage) über Gruslehm (Basislage) über tiefem, devonischem Feinsandstein. Die Fläche Neuhäusel-Quarzit ist in das bundesweite BodendauerbeobachtungsflächenProgramm integriert. Eine eingehende Beschreibung der BDF Neuhäusel II (Fläche Nr. 14) enthält DEHNER et al. 2011.

Das Messprogramm der Level II-Fläche Neuhäusel-Quarzit entspricht dem der Fläche Neuhäusel-Bims mit gesonderten Depositions-, Streufallund Sickerwassermessungen im Bestandesteil "Quarzit".

Datengrundlage und Modellparameter

Tabelle 38: Neuhäusel-Quarzit Level II, D Neuhäusel-Quarzit Level II, data	atengrundlage Meteorologie und Bodenhydrologie. basis meteorology and soil hydrology.				
Klimastation	Neuhäusel (ZIMEN 130)				
Lage der Klimastation	X GK2 : 2622974 Y GK2 : 5589034 Höhe über NN: 539 m, eben ca. 1,2 ha große Grasfläche inmitten eines großen, Fichten- und Buchen-dominierten Waldgebietes im Niederwesterwald. Die Station des Zentralen Immissionsmessnetzes (ZIMEN) liegt ca. 2,3 km nord-nord-westlich der Monitoringfläche und ca. 150 m höher				
Messvariablen	LT, LF, WS, FNS, GS				
Messsysteme FNS	Kippwaage, Pluvio, Hellmann, Bulksampler				
Bestandesniederschlag	Bulksampler, Stammabflussmesssysteme				
Besonderheiten	-				
Zeitraum mit geprüften und lückenersetzten Daten (Tageswerte)	01.01.1988-31.12.2010				
Modellantrieb Niederschlag	BNS				
Windkorrekturfaktor (Coupmodel)	1				
Bodensaugspannung	1996 - 2005: Saugkerzen in 10 - 60 cm Tiefe seit 2002: Einstichtensiometer in 90 cm Tiefe seit 2009: FAWF-Tensiometerer in 90 cm Tiefe				
Bodenwassergehaltr					
Datengrundlage Modellparameter Boden	Labor-pF-Kurve von 2005/06 (modifiziert), hydraulische Leitfähigkeiten invers optimiert				

Meteorologische Daten identisch mit Neuhäusel-Bims (Tab. 31)

Tabelle 39:	Neuhäusel-Quarzit Level II, Modellparameter Boden.	
	Neuhäusel-Quarzit Level II. model parameters soil.	

Horizont	Tiefe	λ	Psie	Porosität	FK	PWP	nFK	K _{matrix}	K _{makro}
	(cm)	(-)	(hPa)	(%)	(Vol.%)	(Vol.%)	(Vol.%)	(m/d)	(m/d)
Ah, Bv	0 - 25	0,12	17,1	52,0	44,0	21,9	22,1	0,10	10
ll Bv	25 - 55	0,13	34,8	39,6	36,6	17,4	19,1	0,08	10
(S)Bv, Cv	55 - 125	0,05	27,9	32,3	30,8	20,8	10,1	0,03	10

Tabelle 40: Neuhäusel-Quarzit Level II, Modellparameter Vegetation.

Neuhäusel-Quarzit Level II, model parameters vegetation.

Blattflächenindex (m²/m²)*	1,5 (Winter) - 9,0 (Sommer)
Interzeptionskapazität (mm/LAI)	-
r _s (Vegetationsperiode) (s/m)	130
kritischer Wassergehalt bei Luftmangel (Vol.%)	1
kritische Saugspannung bei Austrocknung (hPa)	300
maximale Wurzeltiefe (cm ab Oberkante Auflage)	125
Wurzelverteilung	horizontweise gemäß Profilbeschreibung
kompensatorische Wasseraufnahme bei Wasserstress	ja
Intensität kompensatorische Wasseraufnahme (-)	1

* Parameter mit saisonaler und/oder jährlicher Variation

Ergebnisse

FAO-Referenzverdunstung und Klimatische Wasserbilanz Identisch mit Neuhäusel-Bims, Tabelle 34

Neuhäusel-Quarzit Level II

Tabelle 41:Neuhäusel-Quarzit Level II, Bilanzkomponenten des Wasserhaushalts (stammfern).Neuhäusel-Quarzit Level II, components of the water balance (in a distance of the trees).

Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption ^{z)} (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (mm)	Tiefen- sickerung (225 cm) (% des FNS)	Speicher- änderung (0-225 cm) (mm)
1992	989,9	275,9	0,1	101,2	302,5	370,4	37,4	-60,2
1993	1085,2	276,5	2,2	108,8	269,1	376,0	34,7	52,4
1994	1058,0	244,1	0,4	104,1	292,1	434,3	41,0	-17,0
1995	943,2	214,6	0,0	78,6	258,4	414,4	43,9	-22,8
1996	768,3	199,2	1,1	73,6	234,9	267,1	34,8	-7,6
1997	804,6	241,6	0,8	110,7	262,2	178,4	22,2	10,9
1998	1276,9	341,0	0,0	107,7	292,2	540,1	42,3	-4,0
1999	1105,8	328,9	0,0	104,4	285,4	373,7	33,8	13,3
2000	1113,4	334,9	0,0	110,0	263,8	431,1	38,7	-26,4
2001	1201,3	404,3	0,0	64,7	262,6	486,9	40,5	-17,2
2002	1133,1	224,0	11,9	101,6	264,2	464,0	41,0	67,3
2003	787,7	234,5	8,9	117,1	273,5	201,4	25,6	-47,6
2004	1090,0	284,5	2,9	95,6	280,1	401,4	36,8	25,5
2005	1005,6	287,0	4,3	94,2	285,9	329,1	32,7	5,3
2006	967,7	303,8	0,4	73,6	258,7	379,2	39,2	-48,0
2007	1045,5	288,6	0,0	111,2	304,2	326,9	31,3	14,6
2008	988,0	269,6	0,2	100,8	290,8	320,6	32,4	6,0
2009	1028,7	239,5	21,2	113,6	295,3	335,4	32,6	23,8
2010	989,4	378,6	5,8	88,7	249,1	332,0	33,6	-64,7
Summe ³⁾	19382,5	5371,0	60,2	1860,1	5225,0	6962,5	674,5	-96,3
Mittelwert ³⁾	1020,1	282,7	3,2	97,9	275,0	366,4	35,5	-5,1

¹⁾ windkorrigiert ²⁾ Messwert

Abbildung 40: Neuhäusel-Quarzit Level II, Bilanzkomponenten des Wasserhaushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung (stammfern).

Neuhäusel-Quarzit Level II, relative amounts (percent of bulk precipitation); DeltaS: change of storage (in a distance of the trees).

Neuhäusel-Quarzit Level II

Tabelle 42: Neuhäusel-Quarzit Level II, Bilanzkomponenten des Wasserhaushalts (stammnah).

Neuhäusel-Quarzit Level II, components of the water balance (close to the trees).

Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption ²⁾ (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (mm)	Tiefen- sickerung (225 cm) (% des FNS)	Speicher- änderung (0-225 cm) (mm)
1992	989,9	-37,0	1,0	102,0	330,6	689,9	69,7	-96,6
1993	1085,2	-97,8	12,4	108,5	302,7	672,4	62,0	87,0
1994	1058,0	-125,0	2,1	100,9	329,7	789,5	74,6	-39,2
1995	943,2	-112,8	0,1	76,9	282,3	710,7	75,4	-14,0
1996	768,3	-55,3	8,9	74,3	261,0	501,1	65,2	-21,6
1997	804,6	2,1	2,1	111,1	297,0	369,1	45,9	23,1
1998	1276,9	-92,8	1,7	104,7	317,8	966,2	75,7	-20,7
1999	1105,8	-20,1	0,0	103,2	339,2	666,9	60,3	16,5
2000	1113,4	-6,8	0,0	101,2	288,5	750,6	67,4	-20,0
2001	1201,3	39,4	0,0	62,3	290,0	842,3	70,1	-32,7
2002	1133,1	-190,0	28,7	104,1	287,4	807,7	71,3	95,1
2003	787,7	1,7	19,3	120,3	329,7	383,8	48,7	-67,1
2004	1090,0	-82,9	7,5	89,6	289,6	744,3	68,3	42,0
2005	1005,6	-38,4	15,2	94,4	312,9	607,7	60,4	13,8
2006	967,7	8,9	1,5	72,8	271,8	685,6	70,8	-72,8
2007	1045,5	-57,0	0,0	113,9	326,1	653,1	62,5	9,5
2008	988,0	-52,0	0,7	94,6	331,0	607,4	61,5	6,2
2009	1028,7	-120,1	45,5	119,3	319,6	619,0	60,2	45,5
2010	989,4	72,7	9,3	89,8	278,3	628,1	63,5	-88,9
Summe ³⁾	19382,5	-963,1	156,0	1843,7	5785,2	12695,5	1233,4	-134,8
Mittelwert ³⁾	1020,1	-50,7	8,2	97,0	304,5	668,2	64,9	-7,1

¹⁾ windkorrigiert ²⁾ Messwert

Abbildung 41: Neuhäusel-Quarzit Level II, Bilanzkomponenten des Wasserhaushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung (stammnah).

Neuhäusel-Quarzit Level II, relative amounts (percent of bulk precipitation); DeltaS: change of storage (close to the trees).

Neuhäusel-Quarzit Level II

Tabelle 43: Neuhäusel-Quarzit Level II, Bilanzkomponenten des Wasserhaushalts (Gesamtfläche).

Neuhäusel-Quarzit Level II, components of the water balance (total area).

	Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption ²⁾ (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (mm)	Tiefen- sickerung (225 cm) (% des FNS)	Speicher- änderung (0-225 cm) (mm)
	1992	989,9	213,3	0,3	101,4	308,1	434,3	43,9	-67,5
	1993	1085,2	201,7	4,3	108,8	275,8	435,3	40,1	59,3
	1994	1058,0	170,3	0,8	103,4	299,6	505,3	47,8	-21,4
	1995	943,2	149,1	0,0	78,2	263,2	473,7	50,2	-21,0
	1996	768,3	148,3	2,7	73,7	240,1	313,9	40,9	-10,4
	1997	804,6	193,7	1,0	110,8	269,2	216,5	26,9	13,3
	1998	1276,9	254,2	0,3	107,1	297,3	625,3	49,0	-7,4
	1999	1105,8	259,1	0,0	104,2	296,2	432,4	39,1	14,0
	2000	1113,4	266,6	0,0	108,2	268,7	495,0	44,5	-25,1
	2001	1201,3	331,3	0,0	64,2	268,1	558,0	46,4	-20,3
	2002	1133,1	141,2	15,3	102,1	268,8	532,8	47,0	72,9
	2003	787,7	187,9	11,0	117,7	284,7	237,9	30,2	-51,5
	2004	1090,0	211,0	3,8	94,4	282,0	470,0	43,1	28,8
	2005	1005,6	221,9	6,4	94,2	291,3	384,8	38,3	7,0
	2006	967,7	244,8	0,6	73,4	261,4	440,5	45,5	-52,9
	2007	1045,5	219,5	0,0	111,7	308,6	392,1	37,5	13,6
	2008	988,0	205,3	0,3	99,5	298,8	378,0	38,3	6,1
	2009	1028,7	167,6	26,1	114,8	300,1	392,1	38,1	28,1
	2010	989,4	317,4	6,5	88,9	255,0	391,2	39,5	-69,5
	Summe ³⁾	19382,5	4104,2	79,3	1856,8	5337,0	8109,1	786,3	-104,0
Μ	littelwert ³⁾	1020,1	216,0	4,2	97,7	280,9	426,8	41,4	-5,5

¹⁾ windkorrigiert ²⁾ Messwert

Abbildung 42: Neuhäusel-Quarzit Level II, Bilanzkomponenten des Wasserhaushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung (Gesamtfläche).

Neuhäusel-Quarzit Level II, relative amounts (percent of bulk precipitation); DeltaS: change of storage (total area).

Neuhäusel-Quarzit Level II

Neuhäusel-Quarzit Level II, simulated soil water availability and water stress indicators (in a distance of the trees).

Besonderheiten

Analog zur Bims-Fläche (Abschnitt 3.1.7) wurde auch die Simulation des Bestandes auf Quarzit in zwei räumlich getrennte Bereiche unterteilt: stammferner und stammnaher Bereich (Annahme: je 80 % bzw. 20 % der Gesamtfläche). Die Messwerte der Einstichtensiometer wurden analog Neuhäusel-Bims korrigiert.

3.1.9 Leisel Level II (Fichte)

Standort und Bestand

Am Standort Leisel stockt ein teilweise lückiges, 135-jähriges (2012) Fichtenaltholz. Der Boden ist ein Braunerde-Podsol mit einer Hauptlage aus lösslehmführendem, schuttführendem Lehm über einer Basislage aus Grusschutt aus devonischem Quarzit. Die Fläche Leisel ist in das bundesweite Bodendauerbeobachtungsflächen-Programm integriert. Eine eingehende Beschreibung der DBF Leisel (Idar-Oberstein) (Fläche Nr. 6) enthält DEHNER et al. 2011.

Die Fläche Leisel ist sehr umfangreich mit Mess-

einrichtungen ausgestattet. An einer Messstation des Zentralen Immissionsmessnetzes (ZIMEN) werden sowohl meteorologische Parameter als auch Luftschadstoffe kontinuierlich gemessen. Weiterhin erfolgen auf der Fläche Depositionsmessungen im Freiland und im Waldbestand, Streufallmessungen und Sickerwasseranalysen in drei verschiedenen Tiefen.

Datengrundlage und Modellparameter

Tabelle 44:	Tabelle 44:Leisel Level II, Datengrundlage Meteorologie und Bodenhydrologie.Leisel Level II, data basis meteorology and soil hydrology.								
	Klimastation	Leisel (ZIMEN 115)							
	Lage der Klimastation	X GK2 : 2586062 Y GK2 : 5512275 Höhe über NN: 649 m SO-Hang, 10 % Neigung ca. 1,5 ha große Grasfläche inmitten eines großen, fichtendominierten Waldgebietes des Hunsrück, Hoch- und Idarwald Die ZIMEN-Station liegt ca. 300 m südwestlich der Monitoringfläche							
	Messvariablen	LT, LF, WS, FNS, GS							
	Messsysteme FNS	Kippwaage, Pluvio, Hellmann, Bulksampler							
ł	Bestandesniederschlag	Bulksampler							
	Besonderheiten	-							
Zeitraum m	nit geprüften und lückenersetzten Daten (Tageswerte)	01.01.1988-31.12.2010							
Mc	dellantrieb Niederschlag	BNS							
Windk	orrekturfaktor (Coupmodel)	1							
	Bodensaugspannung	2000 - 2005: automat. Tens. in 15 - 90 cm Tiefe seit 2005: automat. Tens. in 30 - 110 cm Tiefe							
	Bodenwassergehaltr	2000 - 2005: automat. TDR in 15 - 60 cm Tiefe seit 2005: automat. TDR in 30 - 110 cm Tiefe							
	Bodentemperatur	seit 2000: Fühler in 15 - 60 cm Tiefe seit 2005: Fühler in 30 - 110 cm Tiefe							
Datengru	ndlage Modellparameter Boden	Labor-pF-Kurve (modifiziert)							

Jahr	LT (°C)	LF (%)	WS (m/s)	FNS (mm/a)	GS (W/m²)
1988	9,1	81	2,3	1115	114
1989	10,1	75	2,1	911	130
1990	9,4	78	2,3	991	131
1991	7,6	74	2,1	752	127
1992	8,1	77	2,1	1054	128
1993	7,8	79	2,2	1114	124
1994	9,0	80	2,4	1096	123
1995	8,4	79	2,5	1298	122
1996	6,5	78	2,5	797	124
1997	8,4	79	2,5	963	130
1998	8,2	79	2,9	1169	116
1999	8,1	83	2,8	1107	127
2000	8,4	85	2,7	1233	123
2001	7,9	82	2,8	1245	124
2002	8,4	80	2,8	1270	115
2003	8,6	74	2,8	813	137
2004	7,6	83	2,7	958	117
2005	8,1	82	2,7	848	127
2006	8,6	82	2,8	1073	127
2007	8,6	79	3,0	1215	122
2008	8,0	79	2,9	1041	117
2009	8,1	80	2,8	1108	120
2010	6,8	80	2,6	1014	119
Mittelwert	8,3	79	2,6	1051	124

Tabelle 45: Leisel Level II, meteorologische Daten.

Leisel Level II, meteorologic data.

Tabelle 46: Leisel Level II, Modellparameter Boden.

Leisel Level II, model parameters soil.

Horizont	Tiefe	λ	Psie	Porosität	FK	PWP	nFK	K _{matrix}	K _{makro}
	(cm)	(-)	(hPa)	(%)	(Vol.%)	(Vol.%)	(Vol.%)	(m/d)	(m/d)
L, Of, Oh	0 - 10	0,34	1,50	78,0	37,5	12,5	25,0	2,1	10
Ahe	10 - 17	0,31	3,08	62,2	44,7 ¹⁾	33,0 ¹⁾	11,7 ¹⁾	0,8	10
Bhv	17 - 27	0,29	2,97	55,3	39,8 ¹⁾	29,3 ¹⁾	10,5 ¹⁾	0,8	10
Bv	27 - 65	0,29	2,94	41,5	29,9 ¹⁾	22,0 ¹⁾	7,9 ¹⁾	0,8	10
mCv1	65 - 90	0,31	3,12	20,7	15,0 ¹⁾	11,0 ¹⁾	4,0 ¹⁾	0,8	10
mCv2	90 - 120	0,09	4,98	13,8	10,2 ¹⁾	7,3 ¹⁾	2,9 ¹⁾	1,2	0,023

¹⁾ Im Rahmen der Modellaufstellung skelettkirrigiert

Tabelle 47: Leisel Level II, Modellparameter Vegetation. Leisel Level II, model parameters vegetation.

Blattflächenindex (m²/m²)*	7,2 (Winter) - 8,0 (Sommer)
Interzeptionskapazität (mm/LAI)	-
r _s (Vegetationsperiode) (s/m)	225
kritischer Wassergehalt bei Luftmangel (Vol.%)	5
kritische Saugspannung bei Austrocknung (hPa)	300
maximale Wurzeltiefe (cm ab Oberkante Auflage)	120
Wurzelverteilung	exp.
kompensatorische Wasseraufnahme bei Wasserstress	ja
Intensität kompensatorische Wasseraufnahme (-)	0,6

* Parameter mit saisonaler und/oder jährlicher Variation

Ergebnisse

FAO-Referenzverdunstung und Klimatische Wasserbilanz

Tabelle 48:	Leisel Level II, FAO-Referenzverdunstung und Klimatische Wasserbilanz. Leisel Level II, FAO reference evapotranspiration and climatic water balance.						
Jahr	FAO-Referenzverdunstung (mm/a)	Klimatische Wasserbilanz (mm/a)					
1988	594,5	576,2					
1989	697,4	259,1					
1990	685,0	355,8					
1991	662,0	127,7					
1992	647,8	458,7					
1993	645,4	524,2					
1995	645,0	506,1					
1995	650,9	711,7					
1996	643,7	192,8					
1997	661,3	350,0					
1998	643,6	584,3					
1999	624,5	537,3					
2000	596,0	698,5					
2001	618,7	688,5					
2002	616,0	717,5					
2003	778,8	74,8					
2004	596,8	408,7					
2005	635,9	259,8					
2006	640,1	486,5					
2007	659,0	616,4					
2008	634,1	458,7					
2009	644,9	518,4					
2010	641,9	423,2					
Summe	14863,4	10534,7					
Mittelwert	646,2	458,0					

Abbildung 46: Leisel Level II, gemessene und simulierte Bodensaugspannung (2000 - 2005). Leisel Level II, measured and simulated soil water suction (2000 - 2005).

Abbildung 47: Leisel Level II, gemessene und simulierte Bodensaugspannung (2005 - 2010). Leisel Level II, measured and simulated soil water suction (2005 - 2010).

Abbildung 48: Leisel Level II, gemessene und simulierte Bodenwassergehalt.

Abbildung 49: Leisel Level II, gemessene und simulierte Bodentemperatur. Leisel Level II, measured and simulated soil temperature.

Tabelle 49: Leisel Level II, Bilanzkomponenten des Wasserhaushalts.

Leisel Level II, components of the water balance.

Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption ²⁾ (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (mm)	Tiefen- sickerung (220 cm) (% des FNS)	Speicher- änderung (0-220 cm) (mm)
1988	1170,6	422,0	0,0	41,9	201,1	507,7	43,4	-2,1
1989	956,4	349,0	0,0	50,6	231,5	318,9	33,3	6,4
1990	1040,8	357,5	0,0	47,3	210,0	389,9	37,5	36,0
1991	789,7	295,8	0,0	42,8	160,6	327,8	41,5	-37,2
1992	1106,5	411,4	0,0	44,3	238,9	420,1	38,0	-8,2
1993	1169,7	384,8	0,0	41,7	203,4	460,9	39,4	78,8
1994	1151,1	419,7	0,0	44,7	200,1	524,5	45,6	-37,8
1995	1362,5	459,2	0,0	44,9	218,2	666,2	48,9	-26,0
1996	836,5	274,8	0,0	41,7	205,5	311,9	37,3	2,6
1997	1011,3	360,5	0,0	42,6	193,6	413,0	40,8	1,6
1998	1227,8	453,4	0,0	43,9	185,4	549,3	44,7	-4,2
1999	1161,9	435,4	0,0	37,9	191,3	432,4	37,2	64,8
2000	1294,5	328,0	0,0	38,0	178,9	802,8	62,0	-53,1
2001	1307,2	477,1	0,0	42,1	194,4	582,5	44,6	11,1
2002	1333,5	444,7	0,0	44,0	189,4	652,2	48,9	3,2
2003	853,6	333,8	0,0	52,9	210,0	299,0	35,0	-42,1
2004	1005,6	320,1	0,0	40,2	182,6	435,4	43,3	27,3
2005	890,1	309,0	0,0	41,6	215,0	320,2	36,0	4,2
2006	1126,6	383,0	0,0	39,3	203,3	530,7	47,1	-29,7
2007	1275,4	417,0	0,0	46,0	217,2	591,1	46,4	4,1
2008	1092,8	398,4	0,0	45,1	204,1	432,4	39,6	12,8
2009	1163,3	383,4	0,0	44,8	221,9	459,8	39,5	53,4
2010	1065,1	350,6	0,0	41,4	193,9	454,6	42,7	24,6
Summe ³⁾	25392,5	8768,8	0,0	999,7	4650,3	10883,2	-	90,6
Mittelwert ³⁾	1104,0	381,3	0,0	43,5	202,2	473,2	42,9	5,4

¹⁾ windkorrigiert ²⁾ Messwert

Abbildung 50: Leisel Level II, Bilanzkomponenten des Wasserhaushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung. Leisel Level II, relative amounts (percent of bulk precipitation); DeltaS: change of storage.

Abbildung 53: Leisel Level II, simulierte Bodenwasserverfügbarkeit im Wurzelraum und Wasserstressindikatoren.

Leisel Level II, simulated soil water availability in the rooting zone and water stress indicators.

Leisel Level II, relative air content per pore volume in top soil (0 - 30 cm depth) ("AIR30").

Besonderheiten

Anders als beim Fichtenbestand in Adenau (Level II und Kompensationsversuch) und Birkenfeld war in Hermeskeil eine geringe innerjährliche Variation des LAI notwendig, um die gemessenen Bodensaugspannungen und Wassergehalte abbilden zu können.

Am Standort Leisel wurde die organische Auflage bei der Parametrisierung des Modells berücksichtigt, da sie hier - insbesondere in Relation zu dem relativ skelettreichen Boden - ein potenziell bedeutsames Wasserreservoir darstellt.

Die maximale Wurzeltiefe beträgt laut Profilbeschreibung 80 cm. Diese war deutlich zu gering, um die gemessene sehr stark ausgeprägte Austrocknung in 90 cm Tiefe in den Modellsimulationen nachzuvollziehen. Im Wasserhaushaltsmodell wurde daher eine maximale Wurzeltiefe von 120 cm (10 cm in der organischen Auflage + 110 cm im Mineralboden) invers optimiert.

Die hohen Schwankungen der simulierten Tensionen in 15 cm Tiefe im Winter 2003 (Abbildung 46) sind auf eine Überschätzung von oberflächennaher Eisbildung und anschließender Schmelze im Modell zurückzuführen. Bei der Interpretation der Messergebnisse der TDR-Sonden sollte berücksichtigt werden, dass auch diese einer erheblichen Unsicherheit unterliegen: Die Messwerte weisen nicht nur einen offset auf, welcher bei der Darstellung weitgehend korrigiert werden konnte, sondern u.a. auch eine Drift. Dies wird z.B. in 15 cm Tiefe um den Jahreswechsel 2001/02 deutlich: Hier werden im Vergleich mit den anderen Untersuchungsjahren über einen längeren Zeitraum vermutlich zu hohe Werte gemessen. Die seit dem Jahr 2005 in 110 cm Bodentiefe installierten TDR-Sonden messen sehr unzuverlässig (Abbildung 49). Die Auswertung des simulierten und gemessenen Bodenwasservorrats beschränkt sich daher auf 0 – 65 cm Tiefe (Abbildung 52).

In Oberflächennähe (15 cm Tiefe) werden die gemessenen Bodentemperaturen durch das Modell gut getroffen. Mit ansteigender Bodentiefe (30 cm, 60 cm) wird die Übereinstimmung zwischen Messung und Simulation zunehmend schlechter (Abbildung 49). Die jährliche Amplitude der Temperatur wird durch das Modell überschätzt. Ursache könnten auch hier die am Standort Leisel derzeit noch bestehenden Wissensdefizite bei den Materialfunktionen des Bodens sein: Es bestehen erhebliche Wechselwirkungen u.a. zwischen Bodenart und Trockenrohdichte, welche im Modell durch die pF-Kurve repräsentiert wird, und der thermischen Leitfähigkeit des Bodens.

Das Auftreten von lateralem Abfluss ist bei der Simulation des Standorts Leisel zur Zeit modelltechnisch nicht berücksichtigt. Standortbegehungen weisen jedoch auf einen zeitweisen Wasserstau hin, so dass ein Teil des hier unter Tiefensickerung eingeordneten Wassers eventuell lateral abfließt.

3.1.10 Schaidt Level II (Eiche mit Buche und Hainbuche)

Standort und Bestand

An der Fläche Schaidt (Hagenbach) stockt ein ca. 114-jähriges (2012), lückiges Eichenaltholz mit einem Unterstand aus Buchen und Hainbuchen. Der Boden ist ein Braunerde-Gley bis Gley aus flachem kiesführendem Kolluvialsand über kiesführendem Fluvisand und Fluvilehm. Durch den Bestand, unmittelbar an der Monitoringfläche vorbei, fließt ein Bach. Dieser fällt zeitweise nahezu trocken, führt aber zeitweise auch Hochwasser, wodurch Teile der Untersuchungsfläche überflutet werden.

Die Fläche Schaidt (Hagenbach) ist in das bundesweite Bodendauerbeobachtungsflächen-Programm integriert. Eine eingehende Beschreibung der BDF Schaidt (Hagenbach) (Fläche Nr. 15) enthält DEHNER et al. 2011.

Die Fläche ist zugleich eine Level II-Fläche des europaweiten Forstlichen Umweltmonitorings (EU-Fläche 706). Das umfangreiche Messprogramm umfasst meteorologische Messungen an einer Waldklimastation, Luftschadstoffmessungen mit Passivsammlern, Depositionsmessungen im Freiland und im Waldbestand, Streufallmessungen und Sickerwasseranalysen in zwei verschiedenen Bodentiefen.

Tabelle 50:	Schaidt Level II, Datengrundlage Schaidt Level II, data basis meteorolo	Schaidt Level II, Datengrundlage Meteorologie und Bodenhydrologie. Schaidt Level II, data basis meteorology and soil hydrology.						
	Klimastation	Schaidt (FAWF Nr. 322a701)						
	Lage der Klimastation	X GK2 :2652535Y GK2 :5436563 Höhe über NN: 136 m; eben Die Klimastation liegt auf einer Grasfläche in einem landwirtschaftlich genutzten Gelände ca. 700 m vom Waldrand entfernt und ca. 4,5 km nordwestlich der Monitoringfläche						
	Messvariablen	LT, LF, WS, FNS, GS						
	Messsysteme FNS	Kippwaage, Pluvio, Hellmann, Bulksampler						
ł	Bestandesniederschlag	Bulksampler						
	Besonderheiten	-						
Zeitraum m	nit geprüften und lückenersetzten Daten (Tageswerte)	01.01.1988-31.12.2010						
Mo	odellantrieb Niederschlag	BNS						
Windk	orrekturfaktor (Coupmodel)	1						
	Bodensaugspannung	seit 2002: Einstichtensiometer in 100 cm Tiefe						
	Bodenwassergehalt	-						
	Grundwasserspiegel	seit 1993 (oberflächennahes + tieferes Grundwasser)						
Datengru	ndlage Modellparameter Boden	Labor-pF-Kurve (modifiziert), hydraulische Leitfähigkeiten invers optimiert						

Datengrundlage und Modellparameter

lahr	LT (°C)	LF (%)	WS (m/s)	FNS (mm/a)	GS (W/m²)
1988	10,7	85	2,1	741	120
1989	10,8	85	1,9	519	132
1990	10,9	85	2,7	733	132
1991	10,0	79	2,2	568	132
1992	10,9	80	2,3	823	130
1993	10,4	81	2,4	753	125
1994	12,1	83	2,4	841	129
1995	10,8	85	2,2	985	134
1996	9,1	85	2,0	651	127
1997	10,3	87	1,8	837	140
1998	10,6	82	2,1	669	129
1999	11,0	86	2,3	898	133
2000	11,8	82	2,1	762	125
2001	11,1	81	2,2	888	129
2002	11,5	80	2,2	879	125
2003	11,2	75	2,1	554	148
2004	10,4	80	2,3	545	135
2005	10,6	83	2,0	620	131
2006	11,0	83	2,0	683	129
2007	11,3	82	2,4	762	130
2008	11,0	83	2,3	635	125
2009	10,9	82	2,1	719	130
2010	9,9	82	1,9	963	125
Mittelwert	10,8	82	2,2	740	130

Tabelle 51: Schaidt Level II, meteorologische Daten.

Schaidt Level II, meteorologic data.

Tabelle 52: Schaidt Level II, Modellparameter Boden.

Horizont	Tiefe	m	n	Alpha	Porosität	FK ¹⁾	PWP ¹⁾	nFK ¹⁾	K _{matrix}	K _{makro}
	(cm)	(-)	(-)	(1/cm)	(%)	(Vol.%)	(Vol.%)	(Vol.%)	(m/d)	(m/d)
L, Of	0 - 4,8	0,17	1,20	0,01	67,6	69,8	26,80	43,1	0,08	0,08
Ah	4,8 - 18,8	0,47	1,89	0,02	25,5	18,8	9,22	9,1	0,74	0,74
Go	18,8 - 64,8	0,44	1,77	0,02	15,7	12,4	6,27	6,0	0,23	0,23
Gr	64,8 - 124,8	0,55	2,24	0,06	40,4	10,4	3,77	6,6	3,40	3,40
ll Gr	124,8 +	0,37	1,58	0,02	38,0	35,0	24,41	10,0	0,03	0,03

¹⁾ nicht skelettkorrigiert, da Skelettgehalt sehr gering

Schaidt Level II

Tabelle 53: Schaidt Level II, Modellparameter Stauwasserabfluss.

Schaidt Level II, model parameters lateral drain.

q1	z1	q2	z2
peakflow (mm)	peaklevel (m)	baseflow (mm)	baselevel (m)
10,0	-0,3	0,2	-2,0

Tabelle 54: Schaidt Level II, Modellparameter Vegetation. Schaidt Level II, model parameters vegetation.

Blattflächenindex (m²/m²)*	0,3 (Winter) - 3,5 (Sommer)
Interzeptionskapazität (mm/LAI)	-
r _s (Vegetationsperiode) (s/m)	120
kritischer Wassergehalt bei Luftmangel (Vol.%)	5
kritische Saugspannung bei Austrocknung (hPa)	300
maximale Wurzeltiefe (cm ab Oberkante Auflage)	95
Wurzelverteilung	exp.
kompensatorische Wasseraufnahme bei Wasserstress	ja
Intensität kompensatorische Wasseraufnahme (-)	0,6

* Parameter mit saisonaler und/oder jährlicher Variation

Ergebnisse

FAO-Referenzverdunstung und Klimatische Wasserbilanz

Tabelle 55:	Schaidt Level II, FAO-Referenzverdunstung u Schaidt Level II, FAO reference evapotranspiratio	nd Klimatische Wasserbilanz. n and climatic water balance.
Jahr	FAO-Referenzverdunstung (mm/a)	Klimatische Wasserbilanz (mm/a)
1988	601,2	176,9
1989	628,4	-83,4
1990	663,8	106,3
1991	705,6	-109,3
1992	729,0	134,9
1993	683,6	107,2
1995	698,5	185,0
1995	658,0	376,7
1996	613,3	70,6
1997	648,3	230,9
1998	680,5	22,1
1999	668,0	274,6
2000	692,1	108,2
2001	702,0	230,8
2002	718,4	204,9
2003	831,4	-249,4
2004	711,0	-138,4
2005	674,8	-24,2
2006	690,0	27,2
2007	704,2	96,4
2008	672,1	-5,2
2009	693,7	60,9
2010	654,4	356,9
Summe	15722,4	2160,4
Mittelwert	683,6	93,9

Schaidt Level II

Abbildung 55: Schaidt Level II, gemessene und simulierte Bodensaugspannung.

Schaidt Level II, measured and simulated soil water suction.

Tabelle 56: Schaidt Level II, Bilanzkomponenten des Wasserhaushalts.

Schaidt Level II, components of the water balance.

Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption ²⁾ (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (mm)	Tiefen- sickerung (0-160 cm) (% des FNS)	Speicher- änderung (0-160 cm) (mm)
1992	863,8	212,8	0,0	120,3	358,2	0,0	182,7	-10,1
1993	790,8	195,4	0,0	116,3	326,7	0,0	133,6	18,9
1994	883,5	244,4	0,0	117,1	317,8	0,0	218,9	-14,8
1995	1034,7	175,8	0,0	108,6	234,3	0,0	516,3	-0,3
1996	683,9	136,1	0,0	91,9	239,5	0,0	220,6	-4,2
1997	879,2	227,0	0,0	86,6	226,2	0,0	340,4	-1,0
1998	702,6	164,5	0,0	99,2	334,5	0,6	172,0	-68,3
1999	942,6	199,8	0,0	103,4	266,2	0,0	305,2	68,0
2000	800,3	161,8	0,0	115,2	322,0	0,0	205,7	-4,5
2001	932,8	183,5	0,0	114,3	369,5	0,3	297,4	-32,1
2002	923,3	126,7	0,0	117,0	333,9	0,0	314,8	30,9
2003	582,0	120,2	0,0	110,4	391,8	0,4	135,0	-175,8
2004	572,6	84,5	0,0	98,4	355,1	0,3	20,8	13,5
2005	650,6	173,6	0,0	96,0	358,3	1,6	19,0	2,1
2006	717,2	169,2	0,0	96,7	269,8	0,4	156,1	24,9
2007	800,6	194,5	0,0	114,3	327,9	0,0	76,8	87,2
2008	667,0	165,4	0,0	108,3	346,0	1,3	162,8	-116,8
2009	754,5	247,8	0,0	100,6	353,3	0,7	35,4	16,7
2010	1011,4	200,8	0,0	104,8	327,2	0,7	204,0	173,8
Summe ³⁾	15193,3	3383,8	0,0	2019,3	6058,4	6,3	3717,5	-152,9
Mittelwert ³⁾	799,6	178,1	0,0	106,3	318,9	0,3	195,7	-10,2

¹⁾ windkorrigiert ²⁾ Messwert

Schaidt Level II

Abbildung 57:Schaidt Level II, Bilanzkomponenten des Wasserhaushalts; oben: Absolutwerte in mm/a;
unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung.
Schaidt Level II, relative amounts (percent of bulk precipitation); DeltaS: change of storage.

Abbildung 58: Schaidt Level II, simulierter Bodenwasservorrat im Wurzelbereich.

Schaidt Level II, simulated soil water availability in the rooting zone and water stress indicators.

Schaidt Level II

Besonderheiten

Beim Freilandniederschlag bestehen erhebliche Differenzen zwischen den Messwerten Pluvio, Hellmann 1 einerseits und Hellmann 2 und Bulksampler andererseits. Dies könnte mit der großen Distanz (4,5 km) zwischen der Waldklimastation und der Freiland-Depositionsmessfläche zusammenhängen. Das Modell wurde mit dem gemessenen Bestandesniederschlag angetrieben. Die Interzeption wurde rein rechnerisch durch Vergleich mit den Freilandniederschlägen des Pluvio / Hellmann 1 ermittelt. Dies führt teilweise zu unplausiblen Ergebnissen hinsichtlich der Interzeption, die insbesondere in den Jahren 2002 - 2004 sehr niedrig ausfällt.

Die simulierte Transpiration ist aufgrund der guten Wasserversorgung für einen Eichenbestand vergleichsweise hoch. Teilweise kommt es über längere Zeiträume zu simuliertem Sauerstoffstress (z.B. 1996/97), was dann zu geringeren Jahrestranspirationen führt (Abbildung 60 und Tabelle 56).

Die Ermittlung der Modell-Bodenparameter erfolgte in Schaidt auf Grundlage des van-Genuchten-Modells (vgl. Kirchheimbolanden, Abschnitt 3.1.6).

Bei einem Ortstermin am 5.9.2007 konnten die aktuellen Tensiometerwerte (Mittelwert -94 hPa am 4.9.2007) durch das Ablesen der Grundwasserpegel (GWO am 5.9.2007 ca. 87 cm unterhalb der Geländeoberfläche) überprüft werden. Die Übereinstimmung mit den Tensiometerwerten war zu diesem Zeitpunkt sehr gut. Von Januar bis Mai 2007 wurden allerdings zahlreiche Tensiometerwerte (Mittel) von bis zu –265 hPa (Eichenfläche) bzw. –370 hPa (Kiefernfläche) aufgezeichnet (Abbildung 55). Dies wäre gleichbedeutend mit einer offenen Wasserfläche (z.B. See, Pfütze) von ca. 165 - 270 cm Tiefe, was den Beobachtungen vor Ort drastisch widerspricht und auf (zumindest temporäre) technische Probleme bei der Tensiometermessung hinweist.

Die Grundwasser-Pegeldaten werden im Zeitraum 1992 - 2003 und dann wieder ab 2006 durch die Simulation sehr gut wiedergegeben. 2004 und 2005 wird der im April beobachtete Wasseranstieg durch das Modell allerdings jeweils unterschätzt. Möglicherweise fand in diesem Zeitraum eine stärkere Wasserzufuhr durch den benachbarten Graben statt.

Mit zunehmender Tiefe geht die vertikale Sickerung in lateralen Abfluss über. Ab 160 cm Tiefe tritt dann praktisch ausschließlich lateraler Abfluss auf. Die für 2004/05 außergewöhnlich niedrigen simulierten Abflüsse stehen im Widerspruch zum gemessenen Grundwasser-Pegel (vgl. Tabelle 56 und Abbildung 56). Ursache könnte hier ein zu niedrig gemessener Bestandesniederschlag oder eine Unterschätzung der Wasserzufuhr über den Graben und/oder Grundwasser-Zustrom sein.

3.2 Wasserhaushalt der Untersuchungsflächen des Kompensationsversuchs

3.2.1 Konzept des vergleichenden Kompensationsversuchs mit verschiedenen Puffersubstanzen zur Minderung der Auswirkungen von Luftschadstoffeinträgen in Waldökosystemen

Ende der 80er Jahre waren die Waldböden in Rheinland-Pfalz auf großen Flächen versauert und an Basen verarmt. Die Puffermechanismen der Waldböden waren weitgehend erschöpft, so dass jede weitere Säurebelastung nahezu unvermindert an den Unterboden und an die Hydrosphäre abgegeben wurde. Zwar wurden die Einträge von Schwefeldioxid in den vergangenen Jahrzehnten stark reduziert, jedoch belasten noch immer zu hohe Stickstoffeinträge das Ökosystem Wald, auch als versauerungswirksame Komponente (BLOCK 2006, MELLERT 2010).

Bodenschutz in säurebelasteten Waldökosystemen bedeutet, dass die aktuellen Luftschadstoffdepositionen kompensiert und die biologischen Kreisläufe unterstützt werden, um so langfristig die Vitalität der Waldbäume zu fördern. Dadurch soll das Risiko einer weiteren Versauerung und Degradierung der Böden sowie die daraus resultierende Gefährdung der Hydrosphäre verringert werden. Neben der Luftreinhaltung und stabilisierenden waldbaulichen Maßnahmen ist die Waldkalkung mit magnesiumreichen Dolomiten die bedeutendste Komponente des Bodenschutzes (SCHAAF & HÜTTL 2006).

Im "vergleichenden Kompensationsversuch" werden begleitend zu den Praxiskalkungsmaßnahmen im Wald die Wirksamkeit und Ökosystemverträglichkeit der Bodenschutzkalkung untersucht. Dies gilt insbesondere für die Erhöhung der Basensättigung im Mineralboden und die Verbesserung der Nährelementversorgung der Bäume, aber auch für die Entwicklung von ökologisch günstigeren Humusformen und die Restabilisierung der Tonminerale. Da der festgestellte Ernährungsstress in erster Linie von einer allgemein schwachen Magnesium-Versorgung (BLOCK et al. 1991) gesteuert wird, welche durchaus eine Folge der Versauerung der Waldstandorte sein kann (SCHÜLER 2002, ULRICH 1991), werden auch entsprechende Düngungseffekte bei der Bodenschutzkalkung und nach der Ausbringung von Magnesiumdüngern untersucht. Die Erkenntnisse aus diesem Versuch geben praktische Entscheidungshilfen für einen wirksamen Boden- und Sickerwasserschutz, sowie bei der Revitalisierung der Wälder .

Im Rahmen des Bodenschutzes wurden in Rheinland-Pfalz seit 1983 655.319 ha Wald gekalkt (Stand 2010). Es ist das Ziel dieser Untersuchungen, Empfehlungen für die Praxis zur Fortführung der Bodenschutzkalkung mit Blick auf die erforderliche Menge und den Turnus der Kalkungen zu erarbeiten.

1988 wurden dazu 4 Parzellenanlagen auf häufig in Rheinland-Pfalz vorkommenden Bodensubstraten in Fichtenbeständen des Sieger Berglandes (Hatzfeldt-Wildenburg'sche Forsten), der Osteifel (Forstamt Adenau) und des Hoch- und Idarwaldes im Hunsrück (ehemals Forstamt Idar-Oberstein, jetzt Forstamt Birkenfeld) sowie in einem Kiefernbestand mit unterständiger Buche im Nördlichen Pfälzerwald (ehemals Forstamt Hochspeyer, jetzt Forstamt Otterberg) eingerichtet.

Alle Standorte waren 1988 stark versauert. Die oberen Bodenhorizonte in Adenau und Hochspeyer wiesen im Mittel pH-Werte in CaCl, von nur etwa 3 auf. In Idar-Oberstein und Hatzfeldt-Wildenburg lagen die entsprechenden pH-Werte noch unter 4. Im tieferen Mineralboden wurde auf allen Standorten pH-Werte um 4 gefunden. Gleichzeitig waren die Standorte nur mangelhaft mit basischen Nährelementen versorgt. Der geringe Vorrat an austauschbarem Magnesium von knapp 1 % Anteil an der effektiven Austauschkapazität auf allen Standorten und in allen Bodentiefen deutete auf die gespannte Ernährungssituation insbesondere bei diesem wichtigen Nährelement hin. Die Bodenaustauscher waren zu über 90 % mit Kationsäuren belegt. Dabei dominierte das bei der Silikatzerstörung freiwerdende Kation Aluminium.

Die Versuchsanlagen sind zur Aufnahme der

unterschiedlichen Behandlungsvarianten in Einzelparzellen eingeteilt. In jeder Versuchsanlage werden die Parzellen mit unterschiedlicher Behandlung einmal wiederholt, die Nullparzellen kommen in mehrmaliger Wiederholung vor. Die Varianten unterscheiden sich in Art und Menge des ausgebrachten Materials. Um die Wirkung auf das Ökosystemkompartiment "Boden" besser erfassen zu können, wurden die basischen Substanzen i.d.R. per Hand ausgebracht, einzelne Varianten jedoch, zum unmittelbaren Vergleich mit den Praxismaßnahmen, auch per Helikopter. Die Kalkungsparzellen wurden bis auf wenige Ausnahmen immer mit derselben Dolomit-Herkunft "Wellen" behandelt. Auch die Frage der Phosphatzugabe wurde unter dem Gesichtspunkt, dass die Kalkung durch Phosphatbeigaben im Ökosystem verträglicher wäre, im "vergleichenden Kompensationsversuch" berücksichtigt. Zudem soll eine P-Düngung die Ernährungssituation eines Waldbestandes verbessern (SMETHURST 2010). Eine detaillierte Beschreibung des Versuchskonzeptes findet sich in der Reihe Mitteilungen der FAWF, Nummer 21/92 und ein Überblick über die Ergebnisse nach 10 Jahren in SCHÜLER 2002.

3.2.2 Hochspeyer Kompensationsversuch (Kiefer mit Buche und Strobe)

Standort und Bestand

An der Kompensationsversuchsfläche Hochspeyer stockt ein 88-jähriges (2012) Kiefernbaumholz mit einem Buchenzwischen- und -unterstand. Der Boden ist eine Podsol-Braunerde mit einer Oberlage aus Sanden aus der Buntsandsteinverwitterung.

Die Versuchsfläche wurde 1988 eingerichtet. Das Messprogramm umfasst Depositionsmessungen im Freiland (kontinuierliche Messwerte seit 2012) und im Waldbestand, Messungen der Bodenfeuchte und Bodentemperatur (TDR 1996-2008, Tensiometer & 10HS Bodenfeuchtesensoren seit 2011), Streufallmessungen (2011/2012), Sickerwasseranalysen in drei Bodentiefen (0, 10 und 60 cm), Boden-, Humus- und Nadelanalysen in mehrjährigen Abständen sowie röntgendiffraktometrische Untersuchungen des Tonmineralzustands.

Tabelle 57:	Hochspeyer Kompensationsversuch, Datengrundlage Meteorologie und Bodenhydrologie. Hochspeyer compensation experiment, data basis meteorology and soil hydrology.						
	Klimastation	Hochspeyer (FAWF Nr. 318a703)					
	Lage der Klimastation	X GK2 : 2638482 GK2 : 5479038 Höhe über NN: 370 m; eben Die Klimastation liegt auf einer 0,25 ha großen Freifläche inmitten eines großen, kiefern- und buchendominierten Wald- gebietes. Sie liegt 30 Höhenmeter tiefer und befindet sich 700 m westlich der Versuchsfläche.					
	Messvariablen	LT, LF, WS, FNS, GS					
	Messsysteme FNS	Kippwaage, Pluvio, Hellmann					
	Bestandesniederschlag	Bulksampler					
	Besonderheiten	Umsetzen der Klimastation von Bad Dürkheim (Hardenburg, Entfernung ca. 15 km Luftlinie) in die Nähe von Hochspeyer im März 1999					
Zeitraum r	nit geprüften und lückenersetzten Daten (Tageswerte)	01.01.1995-31.12.2009					
Mo	odellantrieb Niederschlag	FNS					
Windl	korrekturfaktor (Coupmodel)	1,05					
	Bodensaugspannung	-					
	Bodenwassergehalt	seit 1996: TDR in 4 - 60 cm Tiefe					
	Bodentemperatur	seit 1996: Fühler in 5 - 10 cm Tiefe					
Datengru	undlage Modellparameter Boden	Labor-pF-Kurve (modifiziert), sowie gemessene hydraulische Leitfähigkeiten					

Datengrundlage und Modellparameter

Tabelle 58:	Hochspeyer	Kompensationsversuch,	meteorologische	Daten.
-------------	------------	-----------------------	-----------------	--------

Hochspeyer compensation experiment, meteorologic data.

Jahr	LT (°C)	LF (%)	WS (m/s)	FNS (mm/a)	GS (W/m²)
1995	-0,3	84	1,2	80	40
1996	5,3	84	1,1	560	124
1997	7,2	86	1,2	614	123
1998	7,8	84	1,3	775	118
1999	9,4	79	1,1	745	125
2000	9,9	81	1,4	829	119
2001	9,0	82	1,4	797	124
2002	9,2	83	1,3	874	126
2003	9,4	77	1,1	550	148
2004	8,5	82	1,4	637	128
2005	8,9	82	1,3	803	133
2006	9,1	82	1,2	678	130
2007	9,0	85	1,4	716	132
2008	9,2	87	1,6	709	147
2009	10,2	86	1,2	785	125
Mittelwert	8,1	83	1,3	677	123

 Tabelle 59:
 Hochspeyer Kompensationsversuch, Modellparameter Boden.

Hochspeyer compensation experiment, model parameters soil.

Horizont	Tiefe	λ	Psie	Porosität	FK	PWP	nFK	K _{matrix}	K _{makro}
	(cm)	(-)	(hPa)	(%)	(Vol.%)	(Vol.%)	(Vol.%)	(m/d)	(m/d)
Ahe	0 - 10	0,23	4,78	59,5	n.b.	9,3 ¹⁾	n.b.	2,25	2,25
Bvhs	10 - 38	0,23	4,78	59,5	n.b.	9,3 ¹⁾	n.b.	2,25	2,25
Bv	38 - 64	0,22	3,55	57,0	n.b.	12,1 ¹⁾	n.b.	0,91	0,91
SCv	64 - 83	0,21	4,02	19,2	n.b.	4,2 ¹⁾	n.b.	0,91	0,91
Cv	83 - 115	0,21	3,96	8,9	n.b.	1,9 ¹⁾	n.b.	0,91	0,91

¹⁾ Im Rahmen der Modellaufstellung skelettkorrigiert

n.b. nicht bestimmt

Hochspeyer

Tabelle 60:Hochspeyer Kompensationsversuch, Modellparameter Vegetation.Hochspeyer compensation experiment, model parameters vegetation.

Blattflächenindex (m²/m²)*	6,70 (Winter) - 7,35 (Sommer)
Interzeptionskapazität (mm/LAI)	0,313
r _s (Vegetationsperiode) (s/m)	150
kritischer Wassergehalt bei Luftmangel (Vol.%)	1
kritische Saugspannung bei Austrocknung (hPa)	300
maximale Wurzeltiefe (cm ab Oberkante Auflage)	115
Wurzelverteilung	horizontweise gemäß Profilbeschreibung
kompensatorische Wasseraufnahme bei Wasserstress	ja
Intensität kompensatorische Wasseraufnahme (-)	1

* Parameter mit saisonaler und/oder jährlicher Variation

Ergebnisse

Tabelle 61: Hochspeyer Kompensationsversuch, gemessene und simulierte Interzeption.

Hochspeyer compensation experiment, measured and simulated interception.

	FNS korr. (mm) Messwert	BNS (mm) Messwert	Interzeption (mm) Messwert	Interzeption (mm) Simulation	Abweichung (mm) Messwert/Simulation
1997	644	459	185	187	-2
1998	814	498	316	246	70
1999	782	532	250	252	-3
2000	870	613	258	281	-23
2001	837	581	256	263	-6
2002	918	633	285	245	39
2003	577	361	217	172	45
2004	669	430	240	206	34
2005	843	429	414	209	205
2006	713	613	99	243	-144
2007	752	610	143	204	-62
2008	745	360	384	204	180
2009	825	532	292	198	94
Summe	9988	6651	3337	2910	427
Mittelwert	768	512	257	224	33

Hochspeyer

 Abbildung 62: Hochspeyer Kompensationsversuch, gemessene und simulierte Bodentemperatur.

 Hochspeyer Kompensationsversuch, measured and simulated soil temperature.

Tabelle 62: Hochspeyer Kompensationsversuch, Bilanzkomponenten des Wasserhaushalts.

Hochspeyer compensation experiment, components of the water balance.

Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (mm)	Tiefen- sickerung (235 cm) (% des FNS)	Speicher- änderung (0-235 cm) (mm)
1996	588,3	181,7	7,0	40,7	195,7	156,0	26,5	7,3
1997	644,1	187,1	0,0	46,0	227,3	194,9	30,3	-11,1
1998	813,5	245,5	0,0	52,2	197,3	318,7	39,2	-0,2
1999	781,8	252,4	0,0	66,4	243,7	184,3	23,6	35,1
2000	870,1	280,7	0,0	75,8	289,8	248,3	28,5	-24,6
2001	836,6	262,5	0,0	65,0	196,7	295,9	35,4	16,5
2002	917,6	245,2	0,0	67,0	252,9	338,7	36,9	13,8
2003	577,2	171,9	0,0	77,3	275,3	174,2	30,2	-121,8
2004	669,4	205,8	0,0	66,4	233,0	91,7	13,7	72,4
2005	843,4	209,1	0,0	62,0	218,8	292,0	34,6	61,4
2006	712,5	243,0	0,0	63,1	241,4	236,8	33,2	-71,8
2007	752,4	204,4	0,0	63,9	244,4	228,4	30,3	11,4
2008	744,7	204,2	0,0	55,3	251,7	237,1	31,8	-3,6
2009	824,7	198,4	0,0	52,5	277,7	242,7	29,4	53,4
Summe	10576,3	3092,0	7,0	853,5	3345,6	3239,7	-	38,5
Mittelwert	755,5	220,9	0,5	61,0	239,0	231,4	30,6	2,8

¹⁾ windkorrigiert

Hochspeyer

Abbildung 63: Hochspeyer Kompensationsversuch, Bilanzkomponenten des Wasserhaushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung.

Hochspeyer compensation experiment, components of the water balance; top: values in mm/a; bottom: relative amounts (percent of bulk precipitation); DeltaS: change of storage.

Besonderheiten

Die Interzeption am Standort Hochspeyer beträgt bis 2004 im Mittel etwa 33 % des Freilandniederschlags. Hierbei fällt auf, dass die relative Interzeption im Jahr 1996 mit ca. 26 % des Freilandniederschlags am niedrigsten ausfällt, obwohl hier der Freilandniederschlag sehr gering ist. Zu erwarten wäre dagegen grundsätzlich eine Abnahme der relativen Interzeption mit steigender Niederschlagsmenge. Ab dem Jahr 2005 geht die Datenqualität des gemessenen Bestandesniederschlages zurück. Die Interzeption schwankt seitdem zwischen 14 und 52 % des Freilandniederschlages.

Die Messwerte der Bodentemperatur in 5 und 10 cm Tiefe werden durch das Modell im Zeitraum 1999 bis 2005 realitätsgetreu nachvollzogen. In den Zeiträumen davor (1996 – 1998) und danach (2006 – 2009) werden die Temperaturen durch das Modell allerdings durchgehend um ca. 2 – 3 °C unterschätzt (Abbildung 62). Ein ähnliches Übereinstimmungs- und Abweichungsmuster lässt sich auch an den anderen beiden Standorten des Kompensationsversuchs, Adenau und Otterberg, beobachten (vgl. Abschnitte 3.2.3 und 3.2.4). Dies deutet auf einen Fehler bei den Messwerten hin. Mögliche Ursache ist zum einen der Einbau neuer Bodentemperaturfühler, die andere Toleranzgrenzen aufweisen. Zum anderen war ab 2005 durch mehrfachen Wechsel des Versuchsflächenbetreuers möglicherweise nicht mehr gewährleistet, dass ausgeschwemmte, durch Wildtiere ausgegrabene oder aus anderen Gründen nicht exakt eingebaute Fühler permanent nachjustiert wurden. Auf eine Anpassung von Modellparametern daher wurde verzichtet.

3.2.3 Birkenfeld Kompensationsversuch (Fichte)

Standort und Bestand

An der Kompensationsversuchsfläche Birkenfeld (zuvor Idar-Oberstein) stockt ein teilweise lückiger 94-jähriger (2012) Fichtenaltbestand. Der Boden ist eine mittelgründige Braunerde mit einer Hauptlage aus Staublehm über einer Solifluktionsdecke mit Quarzit-Schutt. Die Versuchsfläche wurde 1988 eingerichtet. Das Messprogramm umfasst Depositionsmessungen im Freiland und im Waldbestand, Messungen der Bodenfeuchte und Bodentemperatur (TDR 1996-2008, Tensiometer und 10HS Bodenfeuchtesensoren seit 2011), Streufallmessungen (2011/2012), Sickerwasseranalysen in drei Bodentiefen (0, 10 und 60 cm), Boden-, Humus- und Nadelanalysen in mehrjährigen Abständen sowie röntgendiffraktometrische Untersuchungen des Tonmineralzustands.

Datengrundlage und Modellparameter

Tabelle 63: Birkenfeld Kompensationsversuch, Datengrundlage Meteorologie und Bodenhydrolog Birkenfeld compensation experiment, data basis meteorology and soil hydrology.								
	Klimastation	Leisel (ZIMEN 115) siehe Abschnitt 3.1.9 (Leisel, Level II)						
Мо	dellantrieb Niederschlag	FNS						
Windk	orrekturfaktor (Coupmodel)	1,05						
	Bodensaugspannung	-						
	Bodenwassergehalt	1996 - 2008: TDR-Sonden in 4 - 60 cm Tiefe						
	Bodentemperatur	seit 1996: Fühler in 5 - 10 cm Tiefe						
Datengrur	ndlage Modellparameter Boden	gemessene pF-Kurven (modifiziert)						

Tabelle 64: Birkenfeld Kompensationsversuch, Modellparameter Boden.

Birkenfeld compensation experiment, model parameters soil.

Horizont	Tiefe	λ	Psie	Porosität	FK	PWP	nFK	K _{matrix}	K _{makro}
	(cm)	(-)	(hPa)	(%)	(Vol.%)	(Vol.%)	(Vol.%)	(m/d)	(m/d)
Ah	0 - 16	0,16	6,94	54,2	n.b.	15,0 ¹⁾	n.b.	11,67	11,67
Bv1	16 - 39	0,16	6,94	54,2	n.b.	15,0 ¹⁾	n.b.	11,67	11,67
Bv2	39 - 50	0,16	6,94	54,2	n.b.	15,0 ¹⁾	n.b.	11,67	11,67
II Bv / Sd	50 - 100	0,14	2,67	13,4	n.b.	21,8 ¹⁾	n.b.	0,67	0,67

¹⁾ Im Rahmen der Modellaufstellung skelettkorrigiert

n.b. nicht bestimmt

Tabelle 65: Birkenfeld Kompensationsversuch, Modellparameter Vegetation.

Birkenfeld compensation experiment, model parameters vegetation.

Blattflächenindex (m2/m2)*	Jahr 1996 1997 1998 1999 2000 2001 2002-2003 2004-2007 2008 2009	LAI 9,30 15,60 13,60 18,90 17,75 17,75 14,00 12,50 9,30 12,50
Interzeptionskapazität (mm/LAI)	0,313	1
r _s (Vegetationsperiode) (s/m)	150	
kritischer Wassergehalt bei Luftmangel (Vol.%)	1	
kritische Saugspannung bei Austrocknung (hPa)	300	
maximale Wurzeltiefe (cm ab Oberkante Auflage)	100	
Wurzelverteilung	horizo	ntweise gemäß Profilbeschreibung
kompensatorische Wasseraufnahme bei Wasserstress	ja	
Intensität kompensatorische Wasseraufnahme (-)	1	

Ergebnisse

Tabelle 66:	66: Birkenfeld Kompensationsversuch, gemessene und simulierte Interzeption. <i>Birkenfeld compensation experiment, measured and simulated interception.</i>											
	FNS korr. (mm) Messwert	BNS (mm) Messwert	Interzeption (mm) Messwert	Interzeption (mm) Simulation	Abweichung (mm) Messwert/Simulation							
1997	1064	611	453	453	0							
1998	1286	719	567	567	-1							
1999	1222	678	544	543	1							
2000	1487	836	651	649	2							
2001	1339	690	649	624	26							
2002	1333	832	502	530	-28							
2003	854	445	409	406	2							
2004	1006	565	441	457	-16							
2005	890	467	422	385	37							
2006	1126	613	513	462	51							
2007	1275	728	547	518	29							
2008	1093	669	424	427	-3							
2009	1150	680	471	435	35							
Summe	15126	8534	6592	6457	135							
Mittelwert	1164	656	507	497	10							

FAO-Referenzverdunstung und Klimatische Wasserbilanz Identisch mit Abschnitt 3.1.9 (Leisel, Level II), Tabelle 48

Abbildung 65: Birkenfeld Kompensationsversuch, gemessene und simulierte Bodentemperatur. Birkenfeld Kompensationsversuch, measured and simulated soil temperature.

Tabelle 67: Birkenfeld Kompensationsversuch, Bilanzkomponenten des Wasserhaushalts.

Birkenfeld compensation experiment, components of the water balance.

Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (mm)	Tiefen- sickerung (260 cm) (% des FNS)	Speicher- änderung (0-260 cm) (mm)
1996	821,9	329,0	0,1	52,8	223,1	244,4	29,7	-27,5
1997	1062,9	453,2	0,0	28,8	228,7	318,3	29,9	34,9
1998	1286,0	567,4	0,0	34,4	192,6	517,8	40,3	-26,1
1999	1222,0	542,8	0,0	16,5	191,7	388,1	31,8	83,0
2000	1487,4	649,5	0,0	16,4	211,3	684,6	46,0	-74,3
2001	1339,3	623,8	0,0	22,0	192,1	501,4	37,4	0,0
2002	1333,4	530,1	0,0	31,7	210,9	515,5	38,7	45,2
2003	854,1	406,3	0,0	39,0	213,2	282,8	33,1	-87,4
2004	1006,3	456,7	0,0	29,6	210,3	266,5	26,5	43,2
2005	889,7	385,5	0,0	31,2	236,3	248,8	28,0	-12,1
2006	1126,2	461,9	0,0	31,0	256,3	399,8	35,5	-22,7
2007	1274,7	517,7	0,0	45,5	266,1	441,1	34,6	4,4
2008	1092,6	426,8	0,0	52,7	243,1	351,2	32,1	18,8
2009	1150,4	435,5	7,3	37,4	271,8	350,3	30,5	48,1
Summe	15947,9	6786,2	7,3	468,8	3147,5	5510,4	-	27,6
Mittelwert	1139,1	484,7	0,5	33,5	224,8	393,6	34,6	2,0

¹⁾ windkorrigiert

Abbildung 66: Birkenfeld Kompensationsversuch, Bilanzkomponenten des Wasserhaushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung.

Birkenfeld compensation experiment, components of the water balance; top: values in mm/a; bottom: relative amounts (percent of bulk precipitation); DeltaS: change of storage.

Besonderheiten

Zur Parametrisierung des Modells standen Labor-Messwerte sowohl der gesättigten als auch der ungesättigten hydraulischen Leitfähigkeit aus den Bodentiefen 10 und 60 cm zur Verfügung. Hierbei fällt auf, dass die gesättigte Leitfähigkeit in 60 cm Tiefe mit 662 cm/d um etwa einen Faktor 60 – 600 höher ist, als der bei AG Boden (2005) angegebene Bereich von 1 – 10 cm/d für Sd-Horizonte (laut Profilbeschreibung liegt in Birkenfeld unterhalb von 50 cm Tiefe ein Sd-Horizont vor). Die gesättigte Leitfähigkeit unterhalb von 50 cm Bodentiefe wurde zudem gegenüber dem Messwert um 90 % reduziert, um die Plausibilität der Simulationsergebnisse zu verbessern.

Bei widersprüchlichen Informationen zwischen Profilbeschreibung und Labor-pF-Kurve bezüglich des Skelettgehalts in einzelnen Bodenhorizonten wurde jeweils die Angabe übernommen, welche in Bezug auf gemessene Bodenwassergehalte die realistischsten Simulationsergebnisse ermöglichte.

Der LAI musste mit Werten zwischen 9,3 und 18,9 m²/m² relativ hoch angenommen werden, um eine akzeptable Übereinstimmung zwischen gemessenem und simuliertem Bestandesniederschlag zu erreichen. Ursache ist möglicherweise ein orographisch bedingter höherer Freilandniederschlag an der ca. 2 km westlich und 120 m höher gelegenen Freiland-Klimastation als an der Kompensationsfläche. Im Jahre 2007 wurden nach Windwurf auf der Fläche ca. 200 Vfm entnommen. Der LAI wurde daher entsprechend angepasst.

Zur Interpretation der Bodentemperaturen vgl. Abschnitt3.2.2, Besonderheiten.

3.2.4 Adenau Kompensationsversuch (Fichte)

Standort und Bestand

An der Kompensationsversuchsfläche Adenau stockt ein weitgehend geschlossenes 79-jähriges (2012) Fichtenbaumholz. Eine Durchforstung fand im Mai 2005 statt. Der Standort ist eine mittelgründige Podsol-Braunerde mit einer Hauptlage aus Lösslehm über Hangschutt der Brohltalschiefer über Brohltalschiefer (Unter-Siegen).

Die Versuchsfläche wurde 1988 eingerichtet. Das Messprogramm umfasst Depositionsmessungen

im Freiland und im Waldbestand, Messungen der Bodenfeuchte und Bodentemperatur (TDR 1996-2008, Tensiometer und 10HS Bodenfeuchtesensoren seit 2011), Streufallmessungen (2011/2012), Sickerwasseranalysen in drei Bodentiefen (0, 10 und 60 cm), Boden-, Humus- und Nadelanalysen in mehrjährigen Abständen sowie röntgendiffraktometrische Untersuchungen des Tonmineralzustands.

Datengrundlage und Modellparameter

Tabelle 68:	Adenau Kompensationsversuch, Datengrundlage Meteorologie und Bodenhydrologie. Adenau compensation experiment, data basis meteorology and soil hydrology.							
	Klimastation	Adenau (FAWF-Nr. 101a703) siehe Abschnitt 3.1.2 (Adenau, Level II)						
Мо	dellantrieb Niederschlag	FNS						
Windk	orrekturfaktor (Coupmodel)	1,05						
	Bodensaugspannung	-						
	Bodenwassergehalt	1996 - 2008: TDR-Sonden in 4 - 60 cm Tiefe						
	Bodentemperatur	seit 1996: Fühler in 5 - 10 cm Tiefe						
Datengrur	ndlage Modellparameter Boden	gemessene pF-Kurven (skelettkorrigiert), Messwerte der hydrologischen Leitfähigkeit (korrigiert, vgl. Abschnitt Besonderheiten)						

Tabelle 69: Adenau Kompensationsversuch, Modellparameter Boden.

Adenau compensation experiment, model parameters soil.

Horizont	Tiefe	λ	Psie	Porosität	FK	PWP	nFK	K _{matrix}	K _{makro}
	(cm)	(-)	(hPa)	(%)	(Vol.%)	(Vol.%)	(Vol.%)	(m/d)	(m/d)
Ah/Aeh	0 - 5	0,14	4,56	52,4	n.b.	15,1	n.b.	1,63	1,63
Bv	5 - 65	0,09	2,67	38,6	n.b.	19,8	n.b.	1,03	1,03
Bv, Cv	65 - 85	0,09	2,66	9,6	n.b.	4,9	n.b.	1,03	1,03
(Bv) Cv	85 - 105	0,08	1,47	5	n.b.	2,5	n.b.	1,03	1,03

¹⁾ Im Rahmen der Modellaufstellung skelettkorrigiert

n.b. nicht bestimmt

Adenau

Tabelle 70:	Adenau Kompensationsversuch, Modellparameter Vegetation. Adenau compensation experiment, model parameters vegetation.						
Blattflächenindex (m²/m²)* 6							
Interzeptionska	pazität (mm/LAI)	0,49					
r _s (Vegetations	periode) (s/m)	100					
kritischer Wass	ergehalt bei Luftmangel (Vol.%)	1					
kritische Saugs	oannung bei Austrocknung (hPa)	300					
maximale Wurz	zeltiefe (cm ab Oberkante Auflage)	85					
Wurzelverteilu	ng	horizontweise gemäß Profilbeschreibung					
kompensatorische Wasseraufnahme bei Wasserstress ja							
Intensität kompensatorische Wasseraufnahme (-) 1							

Ergebnisse

FAO-Referenzverdunstung und Klimatische Wasserbilanz Identisch mit Abschnitt 3.1.2 (Adenau, Level II), Tabelle 6.

	FNS korr. (mm) Messwert	BNS (mm) Messwert	Interzeption (mm) Messwert	Interzeption (mm) Simulation	Abweichung (mm) Messwert/Simulation
1996	719	414	304	345	-41
1997	800	523	277	387	-110
1998	939	560	379	399	-20
1999	891	546	345	285	60
2000	1007	618	389	370	19
2001	1019	648	371	329	42
2002	990	673	317	311	5
2003	691	410	281	262	19
2004	1012	592	420	357	63
2005	976	523	453	305	149
2006	840	435	405	396	8
2007	1100	496	604	347	257
2008	870	417	452	269	183
2009	920	470	450	280	169
Summe	12773	7326	5448	4300	843
Mittelwert	912	523	389	331	65

Tabelle 71:Adenau Kompensationsversuch, gemessene und simulierte Interzeption.Adenau compensation experiment, measured and simulated interception.

 Abbildung 67:
 Adenau Kompensationsversuch, gemessener und simulierter Bodenwassergehalt.

 Adenau Kompensationsversuch, measured and simulated soil water content.

Adenau

Abbildung 68: Adenau Kompensationsversuch, gemessene und simulierte Bodentemperatur. Adenau Kompensationsversuch, measured and simulated soil temperature.

Tabelle 72: Adenau Kompensationsversuch, Bilanzkomponenten des Wasserhaushalts.

Adenau compensation experiment, components of the water balance.

Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (mm)	Tiefen- sickerung (235 cm) (% des FNS)	Speicher- änderung (0-235 cm) (mm)
1996	718,7	345,5	5,1	35,6	152,6	195,7	27,2	-15,7
1997	800,2	387,5	0,0	41,0	220,2	144,0	18,0	7,6
1998	939,3	398,9	0,0	32,2	152,9	367,7	39,1	-12,4
1999	891,1	285,0	0,0	35,0	150,4	407,8	45,8	12,9
2000	1007,0	370,5	0,0	37,9	174,9	427,3	42,4	-3,7
2001	1018,6	329,0	0,0	34,7	170,1	448,1	44,0	36,8
2002	989,8	311,4	0,0	37,5	214,6	447,7	45,2	-21,4
2003	691,0	262,5	0,0	50,0	177,2	217,1	31,4	-15,7
2004	1011,7	357,2	0,0	37,9	213,7	391,6	38,7	11,3
2005	976,1	304,7	0,0	34,6	212,4	406,9	41,7	17,5
2006	840,0	396,4	0,0	43,6	196,5	263,7	31,4	-60,3
2007	1099,9	347,3	0,0	46,0	199,4	472,7	43,0	34,5
2008	869,6	269,2	0,0	54,6	193,1	321,7	37,0	30,9
2009	920,3	280,4	0,0	54,0	198,7	406,2	44,1	-19,0
Summe	12773,4	4645,4	5,1	574,6	2626,7	4918,2	-	3,4
Mittelwert	912,4	331,8	0,4	41,0	187,6	351,3	38,5	0,2

¹⁾ windkorrigiert

Adenau

Abbildung 69: Adenau Kompensationsversuch, Bilanzkomponenten des Wasserhaushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung.

Adenau compensation experiment, components of the water balance; top: values in mm/a; bottom: relative amounts (percent of bulk precipitation); DeltaS: change of storage.

Besonderheiten

Entsprechend dem Standort Birkenfeld (Abschnitt 3.2.3; Besonderheiten) lagen die zur Verfügung gestellten Labor-Messwerte der gesättigten Leitfähigkeit deutlich höher (ca. Faktor 100) als die Literaturwerte (vgl. z.B. AG BODEN 2005 für typische schluffreiche Böden). Zur Verbesserung der Übereinstimmung mit den bodenhydrologischen Messwerten wurde die gesättigte hydraulische Leitfähigkeit in allen Tiefen auf 1/10 des Ursprungswertes verringert und die Tortuositätsfaktoren im ungesättigten Bereich angepasst (n = 1,0 (0 - 5 cm), n = 0,1 (5 + cm)).Ab dem Jahr 2005 verschlechtert sich die Datenqualität des gemessenen Bestandesniederschlages: Gegenüber den Vorjahren fallen die Jahressummen des Bestandesniederschlages im Verhältnis zum Freilandniederschlag deutlich niedriger aus als in den Vorjahren, wodurch sich die gemessene Interzeption auf bis zu 53 % des

Freilandniederschlages erhöhen würde, was wenig plausibel ist (vgl. Tabelle 3 und Tabelle 71). Dadurch ist es in Birkenfeld nicht möglich, den Bestandesniederschlag als treibende Modellvariable zu verwenden. Die Speicherkapazität pro Einheit des LAI wurde so kalibriert, dass das Mittel des gemessenen und simulierten Bestandesniederschlages der Jahre 1996 – 2004 möglichst übereinstimmten. Durch Annahme einer Speicherkapazität von 0,49 mm/Einheit LAI konnte insgesamt eine gute Übereinstimmung zwischen den Messwerten des Bestandesniederschlags und der simulierten Infiltration erzielt werden. Ab dem Jahr 2005 nehmen die Amplituden der gemessenen Bodentemperaturen gegenüber den Vorjahren drastisch zu und werden durch die Simulation nicht mehr nachvollzogen. Mögliche Ursachen wurden bereits in Abschnitt 3.2.2; Besonderheiten diskutiert.

Gauchsberg

3.3 Wasserhaushalt der Untersuchungsflächen des Sukzessionsversuchs

3.3.1 Konzept des Sukzessionsversuchs

Stürme sind eine der wichtigsten Gefahrenquellen für mitteleuropäische Wälder. Es erscheint zudem sehr wahrscheinlich, dass mit dem fortschreitenden Klimawandel auch Anzahl und Intensität extremer Tiefdruckgebiete steigen. Die Folgen sind erhöhte Windgeschwindigkeiten und größere sturmbedingte Schäden in West- und Mitteleuropa (PINTO et al. 2007). Ohne geeignete Anpassungsmaßnahmen erwartet man für den Zeitraum zwischen 2060 und 2100 für Großbritannien und Deutschland eine Zunahme sturmbedingter Schäden um bis zu 37 Prozent (LECKE-BUSCH et al. 2007).

Die Orkane im Frühjahr des Jahres 1990 waren hierfür ein eindrucksvolles Anschauungsbeispiel. Insbesondere die beiden Orkane Vivian und Wiebke verursachten erhebliche Sturmschäden in Deutschland. Sie ließen Kahlflächen von 250.000 ha und eine Schadholzmenge von 70 Millionen Festmeter zurück (Huss et al. 1995).

Bis 1990 wurden durch Sturm entstandene Kahlflächen stets mit hohem Kosten und Zeitaufwand wieder bepflanzt. Allerdings sprengten die Sturmschadensausmaße in 1990 die ökonomischen Rahmenbedingungen der Forstwirtschaft, um die entstandenen Sturmschadensflächen in kurzer Zeit wieder in Bestockung zu bringen. Es kommt hinzu, dass solche Kahlflächen durch extreme Standortsbedingungen, wie offene Windexposition, hohe Ein- und Ausstrahlungs- und damit große Temperaturamplituden, oder die Zunahme extremer Staunässe gekennzeichnet sind. Da die Vorbestände sich aus reiner Fichte zusammensetzten, die gerade auf staunassen Standorten als Reinbestand nicht standortgerecht sind, kam eine Naturverjüngung aus den durch die Stürme verschonten Rest- und Nachbarbeständen nicht in Frage, obgleich die Ansamung eine Wiederbewaldung ermöglicht hätte.

Als Zielsetzung des Versuches und der Untersuchungen wurde formuliert, dass durch eine größere ökologische Vielfalt eine höhere Stabilität in den künftigen Wäldern erreicht werden solle. Außerdem sollten Verfahren entwickelt werden, um die erheblichen Kosten einer Wiederaufforstung zu senken. So wurden auf ausgewählten 1990er Sturmschadensflächen Alternativen zur herkömmlichen Kahlflächenaufforstung untersucht, um verschiedene Möglichkeiten der Wiederbewaldung zu erproben.

Als Waldentwicklungsziel wurde für die Versuchsfläche "Gauchsberg" jeweils ein Traubeneichenwald (*Quercus petraea*) und für die Versuchsfläche Kirchberg ein Stieleichenwald (*Quercus robur*) jeweils mit unterschiedlichen Mischbaumarten definiert. Um dieses Ziel zu erreichen, wurden in einem umfangreichen, sich wiederholenden Parzellenversuch verschiedene Vorwaldtypen erprobt, in deren Schutz sich die Eiche entwickeln sollte. Parallel dazu wurde die Eiche auf der Freifläche gepflanzt, oder es wurde beobachtet, wie sich eine ungelenkte Sukzession auf diesem Standort entwickelt.

Insbesondere wurden folgende Untersuchungen durchgeführt (Sснмідт-Sснütz & Huss 1996; Unseld et al. 2010; Stark et al. 2011; Weich & Unseld 2010):

- Dokumentation der Entwicklung natürlich angesamter krautiger und holziger Jungwüchse in Abhängigkeit vom Grad der Schlagräumung nach den Holzerntearbeiten, von der Wildbelastung und von der anschließenden waldbaulichen Behandlung
- Untersuchung von Überlebensraten und Wachstum von gepflanzten Vorwaldbäumen und in ihrem Schutz aufwachsender Zielbestockungsbäume
- Erfassung und modellhafte Beschreibung der Auswirkungen von Vorwäldern auf die mikroklimatischen Verhältnisse im Bestandesinneren von Altbeständen, von Vorwäldern und auf der ungeschützten Freifläche
- 4. Auswirkungen der Vorwälder auf den Nährstoff- und Kohlenstoffhaushalt des Waldbodens

- 5. Alternative Bewirtschaftungssformen zur Steigerung der energetisch nutzbaren Biomasse im Wald
- 6. Erntetechniken im Energievorwald
- 7. Untersuchungen zum Wasserhaushalt und zum Wasserverbrauch in ausgewählten Versuchsvarianten.

Um den Wasserhaushalt zu beurteilen wurden vergleichende Wasserhaushaltsuntersuchungen und Modellierungen in folgenden Varianten vorgenommen:

- Freifläche
- Fichtenaltbestand
- Eichenaltbestand
- Sukzessionsfläche
- Gepflanzte Traubeneiche auf der Freifläche
- Birkenvorwald mit nachgepflanzter Traubeneiche

3.3.2 Gauchsberg

Standort und Bestand

Die Versuchsfläche am Gauchsberg befindet sich auf einer südlich dem Soonwald vorgelagerten Vorstufe in einer Seehöhe von 390 – 420 mm NN. Das Gelände ist schwach (5°) und überwiegend nach NW geneigt.

Folgende Klimakennwerte der Periode von 1960 bis 1990 kennzeichnen die Versuchsfläche: Der Jahresniederschlag von 600 bis 650 mm fällt hauptsächlich ausserhalb der Vegetationszeit (73 %), wovon nur ca. 10 % als Schnee fallen. Die mittlere Jahrestemperatur betrug in der Periode von 1960 – 1990 noch 7,8°C, wobei die aktuellen Messungen von 1988 bis 2009 eine mittlere Jahrestemperatur von mittlerweile 9,0°C belegen. Die Vegetationszeittemperatur betrug in der Periode von 1960 – 1990 14,3°C und die mittlere Jahresschwankung der Temperatur 17,2°C. Die Vegetationszeit (Tage >10°C) dauerte im Mittel 148 Tage. Frosttage kamen bis Ende April vor, der erste Frost setzte Mitte Oktober wieder ein.

Als natürliche Waldgesellschaft wurde hier ein Buchen-Traubeneichenwald mit Drahtschmiele angesprochen. Bei dem Boden handelt es sich um einen im Untergrund skelettreichen Braunerde-Pseudogley aus schluffigem Lehm im Oberboden und mitteltonigem Lehm im Unterboden. Als nutzbare Wasserspeicherkapazität wurden 54 – 60 mm angesprochen.

Gauchsberg

Datengrundlage und Modellparameter

Tabelle 73:	Gauchsberg, Datengrundlage Metec Gauchsberg, data basis meteorology.	prologie.
	Klimastation	Gauchsberg (FAWF-Nr. 111a702)
	Lage der Klimastation	Unmittelbare Nachbarschaft zur Monitoringfläche, vergleichbare Exposition und Höhenlage, 400 m, W-Hang, 5 % Neigung ca. 0,7 ha große Grasfläche inmitten der Versuchsanlage in einem großen Waldgebiet der Soonwaldvorstufe
	Messvariablen	LT, LF, WS, FNS, GS
	Messsysteme FNS	Kippwaage, Pluvio, Hellmann, Bulksampler
	Bestandesniederschlag	Bulksampler (nur Altbestände)
	Besonderheiten	-
Zeitraum	mit geprüften und lückenersetzten Daten (Tageswerte)	01.01.1988 - 31.12.2009
М	odellantrieb Niederschlag	FNS
Wind	korrekturfaktor (Coupmodel)	1,05

Tabelle 74: Gauchsberg, meteorologische Daten.

Gauchsberg, meteorologic data.

Jahr	LT (°C)	LF (%)	WS (m/s)	FNS (mm/a)	GS (W/m²)
1988	10,9	86	2,2	596	116
1989	11,9	83	2,1	494	122
1990	9,9	83	2,2	545	127
1991	8,4	80	2,2	388	126
1992	9,3	82	2,2	498	125
1993	8,7	79	2,3	709	125
1994	10,0	84	2,4	559	125
1995	8,9	86	2,1	853	122
1996	7,1	85	1,9	542	123
1997	9,2	84	1,8	532	131
1998	9,2	87	2,0	751	114
1999	9,3	83	2,3	700	128
2000	9,7	86	2,0	898	121
2001	9,3	85	2,0	782	121
2002	9,9	84	1,9	773	128
2003	10,0	79	1,7	457	145
2004	9,1	83	1,7	551	133
2005	7,7	84	1,6	608	133
2006	8,0	84	1,6	573	136
2007	8,2	84	1,7	734	137
2008	7,3	86	1,6	644	134
2009	6,8	88	1,3	696	116
Mittelwert	9,0	84	1,9	631	127

Besonderheiten (alle Versuchsvarianten)

Zu Simulationsbeginn (1993) waren die durch den Orkan Wiebke im Februar/März 1990 entstandenen Kahlflächen weitestgehend bereits von aufwachsender Vegetation bedeckt (Abbildung 71). Dies unterscheidet den simulierten Wasserhaushalt des Sukzessionsversuchs von jenem des Kahllagenversuchs (vgl. Abschnitt 3.4), wo die Rodung während des Simulationszeitraums erfolgte.

Die Angaben zu Intensität und Maximaltiefe der Durchwurzelung in den Dokumentationen der Profileinschläge konnten nicht unmittelbar verwendet werden, da sie nicht innerhalb der einzelnen Windwurf-Versuchsvarianten bestimmt wurden. Aus den beiden Altbeständen liegen keine Angaben zur Durchwurzelung vor. Die maximalen Wuzeltiefen wurden daher invers aufgrund der gemessenen Tensions- bzw. Wassergehaltsverläufe bestimmt. Insgesamt zeigten sich gute Übereinstimmungen mit den Profileinschlägen mit einer leichten Tendenz zu größeren maximalen Wurzeltiefen im Modell. Als Wurzelverteilung wurde die für forstliche Standorte übliche exponentielle Abnahme der Wurzeldichte mit der Tiefe verwendet.

Die Modellparameter für den lateralen Stauwasserabfluss konnten für die Versuchsvarianten weitgehend einheitlich parametrisiert werden. Der modellierte Stauwasserstand befindet sich in guter Übereinstimmung mit der jeweiligen Obergrenze des Stauhorizonts. Bei den Aufforstungsvarianten zeigte sich insgesamt eine ausgeprägtere Stauwasserbeeinflussung als in den Altbeständen.

Eine Beurteilung der relativen Vegetationsentwicklung der einzelnen Versuchsvarianten (Sukzession, Traubeneiche, Birke) war nur eingeschränkt möglich:

- Die Ergebnisse von Vegetationsaufnahmen durch die Universität Freiburg liegen nur für die Jahre 1996 und 2006 vor.
- Von der Sukzessionsvariante liegen keine Höhenmessungen vor. Die Ergebnisse der Überfliegung sind für eine vergleichende Beurteilung nicht genau genug (persönliche Mitteilung Frau Schmidt-Schütz, Uni Freiburg, vom 19.9.1997).
- Es gibt keine Bulksampler zur Erfassung des Bestandesniederschlag und zur Kontrolle der simulierten Interzeption in den Varianten Sukzession, Traubeneiche und Birke.

Fichtenaltbestand (Parzellen 5103, 5104)

Datengrundlage, Vegetation und Boden, Modellparameter

Tabelle 75:Gauchsberg Fichtenaltbestand (Parzellen 5103, 5104), Datengrundlage Bodenhydrologie.Gauchsberg Norway spruce mature stand (parcels 5103, 5104), soil hydrologic data.

Bodensaugspannung	1993-2006: Einstichtensiometer in 20-70 cm Tiefe
Bodenwassergehalt	-
Datengrundlage Modellparameter Boden	Labor-pF-Kurven des Profils "BE 2"

Tabelle 76:Gauchsberg Fichtenaltbestand (Parzellen 5103, 5104), Modellparameter Boden.Gauchsberg Norway spruce mature stand (parcels 5103, 5104), model parameters soil.

Horizont	Tiefe	λ	Psie	Porosität	FK	PWP ¹⁾	nFK	K _{matrix}	K _{makro}
	(cm)	(-)	(hPa)	(%)	(Vol.%)	(Vol.%)	(Vol.%)	(m/d)	(m/d)
Bv Sw, Sw	0 - 43	0,13	5,01	43,0	n.b.	11,97	n.b.	0,30	0,30
Sd, Cv, Sd	43 - 100	0,12	4,39	32,5	n.b.	10,22	n.b.	0,05	0,05

¹⁾ Im Rahmen der Modellaufstellung nicht skelettkorrigiert (Begründung: TDR-Messungen der anderen Parzellen bestätigen die Richtigkeit der Labor-pF-Kurven und zeigen, dass der Skelettgehalt in den Bodenprofilen überschätzt wurde.)

Tabelle 77:	Gauchsberg, Modellparameter Stauwasserabfluss (alle Versuchsvarianten).
	Gauchsberg, model parameters lateral drain.

Variante	Parzellen-Nr.	q1 peakflow (mm)	z1 peaklevel (m)	q2 baseflow (mm)	z2 baselevel (m)
Fichtenaltbestand	5103, 5104	5,0	-0,43	0,8	-3,0
Eichenaltbestand	5503, 5504	5,0	-0,43	0,8	-3,0
Null-/Freifläche	5003, 5004	4,0	-0,3	0,5	-3,0
Sukzessionsvariante	5203	8,0	-0,3	0,5	-3,0
Sukzessionsvariante	5204	4,0	-0,3	0,5	-3,0
Traubeneiche	5303, 5304	8,0	-0,3	0,5	-3,0
Birke	5403, 5404	4,0	-0,3	0,5	-3,0

Tabelle 78:Gauchsberg Fichtenaltbestand (Parzellen 5103, 5104), Modellparameter Vegetation.Gauchsberg, Norway spruce mature stand (parcels 5103, 5104), model parameters vegetation.

Blattflächenindex (m²/m²)*	siehe Abbildung 70		
Bestandeshöhe (m)	siehe Abbildung 71		
Interzeptionskapazität (mm/LAI)	0,3 (Wasser), 4 (Schnee)		
r _s (Vegetationsperiode) (s/m)	150		
kritischer Wassergehalt bei Luftmangel (Vol.%)	5		
kritische Saugspannung bei Austrocknung (hPa)	300		
maximale Wurzeltiefe (cm ab Oberkante Auflage)	85		
Wurzelverteilung	exp.		
kompensatorische Wasseraufnahme bei Wasserstress	ја		
Intensität kompensatorische Wasseraufnahme (-)	0,6		

* Parameter mit saisonaler und/oder jährlicher Variation

Gauchsberg

Ergebnisse Fichtenaltbestand

Tabelle 79:	Gauchsberg Fichtenaltbestand (Parzellen 5103, 5104), gemessene und simulierte
	Interzeption.

Gauchsberg, Norway spruce mature stand (parcels 5103, 5104) measured and simulated interception.

	FNS korr. (mm) Messwert	BNS (mm) Messwert	Interzeption (mm) Messwert	Interzeption (mm) Simulation	Abweichung (mm) Messwert/Simulation
1993	745	519	225	203	22
1994	587	402	185	189	-4
1995	895	689	206	204	2
1996	569	398	171	162	10
1997	559	383	176	177	0
1998	789	521	268	230	38
1999	735	522	213	206	7
2000	943	668	275	213	62
2001	796	641	154	190	-35
2002	812	642	170	169	1
2003	480	355	125	117	8
2004	578	421	158	160	-2
2005	639	413	225	176	49
2006	602	366	236	170	66
2007	771	476	295	155	140
2008	677	511	166	164	2
2009	731	408	323	185	137
Summe	11907	8337	3571	3070	501
Mittelwert	700	490	210	181	29

Gauchsberg, Norway spruce mature stand (parcels 5103, 5104), measured and simulated soil water suction.

7/00 7/01 7/01 7/02 7/02 7/03 7/05 7/05 7/05 7/05 7/05 7/05 7/05

7/08 7/09 7/09

Tabelle 80:Gauchsberg Fichtenaltbestand (Parzellen 5103, 5104), Bilanzkomponenten des
Wasserhaushalts.

Gauchsberg Norway spruce mature stand (parcels 5103, 5104), components of the water balance.

Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (165 cm) (mm)	lateraler Abfluss (0-165 cm) (mm)	Speicher- änderung (0-165 cm) (mm)
1993	744,6	203,5	0,0	69,5	254,8	33,7	105,5	77,6
1994	587,1	188,7	0,0	63,3	237,1	94,2	99,9	-96,2
1995	895,1	204,1	0,0	76,5	221,4	82,9	230,4	79,8
1996	569,3	161,5	0,0	59,3	214,7	62,2	121,4	-49,8
1997	559,0	176,8	0,0	48,4	226,0	26,6	72,3	8,9
1998	788,7	229,6	0,0	42,3	225,9	61,8	202,5	26,7
1999	735,1	205,7	0,0	58,0	285,2	59,2	144,9	-18,0
2000	942,6	213,5	0,0	59,5	218,1	285,0	124,8	41,7
2001	795,6	189,8	0,0	64,1	251,1	92,8	231,7	-33,8
2002	811,9	169,3	0,0	61,4	245,8	144,8	181,3	9,3
2003	479,8	117,0	0,0	63,9	221,2	57,6	81,1	-61,0
2004	578,4	160,3	0,0	60,5	238,7	61,3	45,8	11,8
2005	638,5	175,9	0,0	61,4	259,0	78,4	29,7	34,2
2006	602,1	169,9	0,0	53,2	232,7	44,2	110,9	-8,8
2007	770,9	155,0	0,0	59,9	228,1	139,5	154,2	34,2
2008	677,4	163,6	0,0	53,0	225,1	117,6	140,7	-22,5
2009	731,2	185,5	0,0	44,4	174,4	109,9	131,9	85,2
Summe	11907,3	3069,6	0,0	998,6	3959,2	1551,7	2208,8	119,4
Mittelwert	700,4	180,6	0,0	58,7	232,9	91,3	129,9	7,0

Abbildung 73: Gauchsberg Fichtenaltbestand (Parzellen 5103, 5104), Bilanzkomponenten des Wasserhaushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung.

Gauchsberg Norway spruce mature stand (parcels 5103, 5104), components of the water balance; top: values in mm/a; bottom: relative amounts (percent of bulk precipitation); DeltaS: change of storage.

Besonderheiten Fichtenaltbestand

Bis 2004 ließ sich eine sehr gute Übereinstimmung zwischen gemessener und simulierter Interzeption erreichen. Vereinzelt auftretende Differenzen von 35 – 62 mm/a in den Jahren 1998, 2000 und 2001 sind wahrscheinlich auf Ungenauigkeiten bei der Erfassung des Bestandesniederschlages zurückzuführen. Ab 2005 weichen gemessener und simulierter Bestandesniederschlag vermutlich aufgrund der abnehmenden Datenqualität der Messwerte immer mehr von einander ab. Ende 2009 beträgt die kumulative Abweichung über die 17 Messjahre 501 mm (Tabelle 79).

Eichenaltbestand (Parzellen 5503, 5504)

Datengrundlage, Vegetation und Boden, Modellparameter

Tabelle 81:Gauchsberg Eichenaltbestand (Parzellen 5503, 5504), Datengrundlage Bodenhydrologie.Gauchsberg oak mature stand (parcels 5503, 5504), soil hydrologic data.

Bodensaugspannung	-
Bodenwassergehalt	1998 - 2008: TDR in 30 - 70 cm Tiefe
Datengrundlage Modellparameter Boden	Labor-pF-Kurven des Profils "BE 1"

Tabelle 82: Gauchsberg Eichenaltbestand (Parzellen 5503, 5504), Modellparameter Boden.

Gauchsberg oak mature stand (parcels 5503, 5504), model parameters soil.

Horizont	Tiefe	λ	Psie	Porosität	FK	PWP ¹⁾	nFK	K _{matrix}	K _{makro}
	(cm)	(-)	(hPa)	(%)	(Vol.%)	(Vol.%)	(Vol.%)	(m/d)	(m/d)
Bv, Bv Cv/Sw	0 - 60	0,11	6,48	38,8	n.b.	14,0	n.b.	0,30	0,30
Cv/Sd	60 +	0,06	4,93	40,6	n.b.	22,2	n.b.	0,05	0,05

¹⁾ Im Rahmen der Modellaufstellung nicht skelettkorrigiert (Begründung: TDR-Messungen bestätigen die Richtigkeit der Labor-pF-Kurve und zeigen, dass der Skelettgehalt in den Bodenprofilen überschätzt wurde).

Modellparameter Stauwasserabfluss siehe Tabelle 77

Tabelle 83:Gauchsberg Eichenaltbestand (Parzellen 5503, 5504), Modellparameter Vegetation.Gauchsberg oak mature stand (parcels 5503, 5504), model parameters vegetation.

Blattflächenindex (m²/m²)*	siehe Abbildung 70
Bestandeshöhe (m)	siehe Abbildung 71
Interzeptionskapazität (mm/LAI)	0,245 (Wasser), 4 (Schnee)
r _s (Vegetationsperiode) (s/m)	120
kritischer Wassergehalt bei Luftmangel (Vol.%)	5
kritische Saugspannung bei Austrocknung (hPa)	300
maximale Wurzeltiefe (cm ab Oberkante Auflage)	100
Wurzelverteilung	exp.
kompensatorische Wasseraufnahme bei Wasserstress	ja
Intensität kompensatorische Wasseraufnahme (-)	0,6

Ergebnisse Eichenaltbestand

Tabelle 84:	Gauchsberg Eichenaltbestand (Parzellen 5503, 5504), gemessene und simulierte
	Interzeption.

Gauchsberg oak mature stand (parcels 5503, 5504), measured and simulated interception.

	FNS korr. (mm) Messwert	BNS (mm) Messwert	Interzeption (mm) Messwert	Interzeption (mm) Simulation	Abweichung (mm) Messwert/Simulation
1993	745	-	-	175	-
1994	587	-	-	159	-
1995	895	-	-	193	-
1996	569	-	-	145	-
1997	559	-	-	144	-
1998	789	-	-	162	-
1999	735	565	171	166	5
2000	943	704	239	170	69
2001	796	650	146	164	-18
2002	812	675	137	146	-9
2003	480	349	131	102	30
2004	578	461	117	142	-25
2005	639	451	188	158	30
2006	602	419	183	148	35
2007	771	547	224	134	90
2008	677	544	134	144	-10
2009	731	433	299	168	130
Summe ¹⁾	7764	5798	1969	1642	327
Mittelwert ¹⁾	706	527	179	149	30

¹⁾ 1999 - 2009

Abbildung 74: Gauchsberg Eichenaltbestand (Parzellen 5503, 5504), gemessener und simulierter Bodenwassergehalt.

Gauchsberg oak mature stand (parcels 5503, 5504), measured and simulated soil water content.

Tabelle 85:Gauchsberg Eichenaltbestand (Parzellen 5503, 5504), Bilanzkomponenten des
Wasserhaushalts.

Gauchsberg oak mature stand (parcels 5503, 5504), components of the water balance.

Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (165 cm) (mm)	lateraler Abfluss (0-165 cm) (mm)	Speicher- änderung (0-165 cm) (mm)
1993	744,6	175,0	0,0	70,1	268,7	52,6	117,2	61,0
1994	587,1	159,1	0,0	66,0	252,6	75,4	112,2	-78,1
1995	895,1	192,8	0,0	65,4	236,3	72,6	275,1	52,9
1996	569,3	145,3	0,0	57,7	233,4	52,4	102,7	-22,2
1997	559,0	143,5	0,0	56,0	238,2	50,9	68,0	2,3
1998	788,7	162,2	0,0	56,4	238,4	82,7	236,8	12,3
1999	735,1	165,5	0,0	65,2	294,9	121,0	99,8	-11,2
2000	942,6	169,7	0,0	65,4	245,4	243,4	184,5	34,2
2001	795,6	164,2	0,0	62,8	254,7	127,0	197,8	-10,9
2002	811,9	145,7	0,0	61,1	260,4	135,8	215,5	-6,7
2003	479,8	101,6	0,0	65,1	226,6	45,8	84,1	-43,3
2004	578,4	142,3	0,0	60,3	249,6	58,3	57,1	10,9
2005	638,5	158,3	0,0	60,3	282,9	76,0	39,3	21,9
2006	602,1	148,3	0,0	54,4	244,2	43,5	115,5	-3,9
2007	770,9	133,9	0,0	59,2	261,0	130,0	171,9	14,9
2008	677,4	144,1	0,0	53,7	248,1	88,4	160,9	-17,8
2009	731,2	168,4	0,0	44,3	199,0	111,7	130,4	77,3
Summe	11907,3	2619,9	0,0	1023,3	4234,3	1567,4	2368,8	93,6
Mittelwert	700,4	154,1	0,0	60,2	249,1	92,2	139,3	5,5

Abbildung 75: Gauchsberg Eichenaltbestand (Parzellen 5503, 5504), Bilanzkomponenten des Wasser haushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung.

Gauchsberg oak mature stand (parcels 5503, 5504), components of the water balance; top: values in mm/a; bottom: relative amounts (percent of bulk precipitation); DeltaS: change of storage.

Besonderheiten Eichenaltbestand

Eine im Eichenaltbestand zunächst angenommene jahreszeitliche Dynamik des LAI musste verworfen werfen, da sich aufgrund der Messergebnisse der Bulksampler im Bestand entgegen der Erwartungen eine verminderte Interzeption im Winter nicht nachvollziehen ließ. Ab 2005 weicht der simulierte Bestandesniederschlag ähnlich wie im Fichtenaltbestand deutlich von den Messwerten ab. Ende 2009 beträgt die kumulative Abweichung 327 mm (Tabelle 84). Ursache für die Abweichung ist vermutlich die Datenqualität der Messwerte. In 20 cm Tiefe konnte bis 2004 eine sehr gute Übereinstimmung zwischen den Messwerten des Bodenwassergehaltes und den Simulationsergebnissen erzielt werden (Abbildung 74). In 70 cm Tiefe schwanken die TDR-Werte im Jahresverlauf allerdings deutlich stärker als die simulierten Werte. Ursache sind elementare Widersprüche zwischen der Labor-pF-Kurve aus 70 cm Tiefe, welche der Simulation zu Grunde liegt, und den in-situ-Wassergehalten: Während die pF-Kurve für die Tiefe 70 cm zwischen pF 0 und pF 4,2 eine Freisetzung von etwa 18 Vol. % Wasser anzeigt, schwanken die Sonden in dieser Tiefe zwischen Sommer und Winter um jeweils etwa 40 Vol. %. Da die Skelettgehalte in den Unterböden der Profileinschläge zwischen 60 und 75 Vol.

% liegen, erscheinen die Resultate der pF-Kurven wesentlich plausibler und die beobachteten Abweichungen zwischen Messwerten und Simulation somit durch systematische Fehler bei den TDR-Sonden bedingt (Einbau lediglich in skelettärmeren Bereichen möglich). Ab 2006 (2005 liegen keine Messwerte vor) verschlechtert sich die Übereinstimmung zwischen gemessenen und simulierten Bodenwassergehalten sowohl in 20 als auch in 70 cm Tiefe erheblich. Die kurzzeitigen Schwankungen nehmen deutlich zu und werden durch die Simulation nicht nachvollzogen. In den Jahren 2006 und 2007 erfolgt die Wiederbefeuchtung durch die Simulation deutlich früher als bei den Messwerten. Der Vergleich zwischen Bodenwasservorräten, welche aus den TDR-Messergebnissen interbzw- extrapoliert wurden und den Simulationsergebnissen für alle Modellkompartimente von 0-75 cm Tiefe (=Hauptwurzelzone) verdeutlicht, dass sich die simulierten Bodenwasservorräte trotz der dokumentierten Abweichungen der Wassergehalte in 70 cm Tiefe bis zum Jahre 2005 in guter Übereinstimmung mit den Messergebnissen befinden (Abbildung 76). Ab 2006 verschlechtert sich die Überstimmung aufgrund der oben angegebenen Gründe zunehmend.

Null-/Freifläche (Parzellen 5003, 5004)

Datengrundlage, Vegetation und Boden, Modellparameter

Tabelle 86:Gauchsberg Null-/Freifläche (Parzellen 5003, 5004), Datengrundlage Bodenhydrologie.Gauchsberg open area (parcels 5003, 5004), soil hydrologic data.

Bodensaugspannung	1993 - 2006: Einstichtensiometer in 20 - 70 cm Tiefe
Bodenwassergehalt	-
Datengrundlage Modellparameter Boden	Labor-pF-Kurven des Profils "BE 2"

Tabelle 87:Gauchsberg Null-/Freifläche (Parzelle 5003, Modellparameter Boden.Gauchsberg oak mature stand (parcel 5003), model parameters soil.

Horizont	Tiefe	λ	Psie	Porosität	FK	PWP ¹⁾	nFK	K _{matrix}	K _{makro}
	(cm)	(-)	(hPa)	(%)	(Vol.%)	(Vol.%)	(Vol.%)	(m/d)	(m/d)
Bv Sw, Sw	0 - 43	0,13	5,01	43,0	n.b.	11,97	n.b.	0,30	0,30
Sd, Cv Sd	43 +	0,12	4,39	32,5	n.b.	10,22	n.b.	0,05	0,05

Tabelle 88: Gauchsberg Null-/Freifläche (Parzelle 5004), Modellparameter Boden.

Gauchsberg oak mature stand (parcel 5004), model parameters soil.

Horizont	Tiefe	λ	Psie	Porosität	FK	PWP ¹⁾	nFK	K _{matrix}	K _{makro}
	(cm)	(-)	(hPa)	(%)	(Vol.%)	(Vol.%)	(Vol.%)	(m/d)	(m/d)
Bv Sw, Sw	0 - 53	0,13	5,01	43,0	n.b.	11,97	n.b.	0,30	0,30
Sd, Cv Sd	53 +	0,12	4,39	32,5	n.b.	10,22	n.b.	0,05	0,05

¹⁾ Im Rahmen der Modellaufstellung nicht skelettkorrigiert (Begründung: TDR -Messungen der anderen Parzellen bestätigen die Richtigkeit der Labor-pF-Kurven und zeigen, dass der Skelettgehalt in den Bodenprofilen überschätzt wurde).

Modellparameter Stauwasserabfluss siehe Tabelle 77

Tabelle 89:Gauchsberg Null-/Freifläche (Parzellen 5003, 5004), Modellparameter Vegetation.Gauchsberg open area (parcels 5003, 5004), model parameters vegetation.

Blattflächenindex (m²/m²)*	siehe Abbildung 70
Bestandeshöhe (m)	siehe Abbildung 71
Interzeptionskapazität (mm/LAI)	0,2 (Wasser), 4 (Schnee)
r _s (Vegetationsperiode) (s/m)	50
kritischer Wassergehalt bei Luftmangel (Vol.%)	5
kritische Saugspannung bei Austrocknung (hPa)	300
maximale Wurzeltiefe (cm ab Oberkante Auflage)	0 (Winter) - 80 (Sommer)
Wurzelverteilung	exp.
kompensatorische Wasseraufnahme bei Wasserstress	ja
Intensität kompensatorische Wasseraufnahme (-)	0,6

* Parameter mit saisonaler und/oder jährlicher Variation.

Ergebnisse

Abbildung 77: Gauchsberg Null-/Freifläche (Parzelle 5003), gemessene und simulierte Bodensaugspannung.

Gauchsberg open area (parcel 5003), measured and simulated soil water suction.

Gauchsberg open area (parcel 5004), measured and simulated soil water suction.

Tabelle 90: Gauchsberg Null-/Freifläche (Parzelle 5003), Bilanzkomponenten des Wasserhaushalts.

Gauchsberg open area (parcel 5003), components of the water balance.

Zeitraum	Freiland- nieder- schlag ¹⁾	Inter- zeption	Ober- flächen- abfluss	Evapora- tion (real)	Transpira- tion (real)	Tiefen- sickerung (165 cm)	lateraler Abfluss (0-165 cm)	Speicher- änderung (0-165 cm)
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
1993	744,6	4,1	0,0	269,3	85,8	0,0	348,0	37,3
1994	587,1	2,7	0,0	254,4	81,1	53,6	272,3	-76,9
1995	895,1	4,2	0,0	278,5	72,8	56,6	500,7	-17,7
1996	569,3	6,0	0,0	200,0	99,8	55,8	159,9	47,7
1997	559,0	4,4	0,0	242,5	64,7	69,1	220,3	-42,9
1998	788,7	0,8	0,0	278,0	12,4	36,6	454,5	6,4
1999	735,1	0,0	0,0	298,1	0,2	62,3	330,8	43,8
2000	942,6	0,0	0,0	364,9	0,2	5,6	557,1	14,8
2001	795,6	0,0	0,0	297,7	0,2	83,6	441,3	-27,3
2002	811,9	0,0	0,0	297,8	0,2	55,6	449,7	8,5
2003	479,8	0,0	0,0	250,8	0,3	79,1	162,1	-12,4
2004	578,4	0,0	0,0	259,9	0,2	84,5	243,9	-10,1
2005	638,5	8,2	0,0	214,6	132,5	44,0	203,5	35,7
2006	602,1	4,0	0,0	225,8	104,5	72,0	282,0	-86,3
2007	770,9	0,0	0,0	302,0	0,2	7,1	422,3	39,4
2008	677,4	0,0	0,0	260,2	0,2	132,1	263,0	21,9
2009	731,2	0,0	0,0	276,1	0,2	30,4	365,8	58,7
Summe	11907,3	34,5	0,0	4570,5	656,4	928,0	5677,3	40,6
Mittelwert	700,4	2,0	0,0	268,9	38,6	54,6	334,0	2,4

Abbildung 79: Gauchsberg Null-/Freifläche (Parzelle 5003), Bilanzkomponenten des Wasser haushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung.

Gauchsberg open area (parcel 5503), components of the water balance; top: values in mm/a; bottom: relative amounts (percent of bulk precipitation); DeltaS: change of storage.

Tabelle 91: Gauchsberg Null-/Freifläche (Parzelle 5004), Bilanzkomponenten des Wasserhaushalts.

Gauchsberg open area (parcel 5004), components of the water balance.

Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (165 cm) (mm)	lateraler Abfluss (0-165 cm) (mm)	Speicher- änderung (0-165 cm) (mm)
1993	744,6	4,1	0,0	271,1	86,6	0,0	338,0	44,9
1994	587,1	2,7	0,0	256,8	83,1	62,1	275,4	-93,0
1995	895,1	4,2	0,0	279,5	73,4	74,1	465,4	-1,5
1996	569,3	6,0	0,0	199,5	100,8	64,4	154,6	44,0
1997	559,0	4,4	0,0	247,7	64,9	53,1	223,4	-34,5
1998	788,7	0,8	0,0	276,7	12,6	52,9	447,2	-1,4
1999	735,1	0,0	0,0	296,9	0,2	80,2	315,9	41,8
2000	942,6	0,0	0,0	366,2	0,2	0,0	567,6	8,6
2001	795,6	0,0	0,0	303,4	0,2	65,4	441,0	-14,3
2002	811,9	0,0	0,0	300,1	0,2	69,1	438,8	3,7
2003	479,8	0,0	0,0	250,0	0,3	96,9	164,2	-31,4
2004	578,4	7,5	0,0	218,2	103,9	94,6	167,4	-13,1
2005	638,5	8,2	0,0	215,8	133,5	64,6	169,3	47,1
2006	602,1	2,9	0,0	242,0	79,7	65,4	272,0	-60,0
2007	770,9	0,0	0,0	303,8	0,2	22,9	413,1	30,9
2008	677,4	0,0	0,0	263,0	0,2	69,2	309,1	35,9
2009	731,2	0,0	0,0	278,4	0,2	0,0	399,8	52,9
Summe	11907,3	40,9	0,0	4569,1	740,0	934,8	5562,1	60,4
Mittelwert	700,4	2,4	0,0	268,8	43,5	55,0	327,2	3,6

Abbildung 80: Gauchsberg, Null-/Freifläche (Parzelle 5004), Bilanzkomponenten des Wasserhaushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung.

Gauchsberg, open area (parcel 5504), components of the water balance; top: values in mm/a; bottom: relative amounts (percent of bulk precipitation); DeltaS: change of storage.

Besonderheiten Null-/Freifläche

Auf den eigentlich vegetationslosen Null-/Freiflächen trat offensichtlich in einzelnen Untersuchungsjahren in geringem Umfang Interzeption auf. Vermutliche Ursache ist ein kurzzeitiges Aufwachsen krautiger Vegetation, bevor diese in regelmäßigen Abständen durch ein Herbizid beseitigt werden konnte. Das Aufwachsen dieser Pflanzen lässt sich auf beiden Parzellen in den ersten Untersuchungsjahren sowie auf der Parzelle 5004 auch im Jahr 2004 sehr gut an den Messwerten der Bodensaugspannung nachvollziehen. In den Jahren 2005 und 2006 ist das Aufwachsen einer krautigen Vegetation ebenfalls auf beiden Flächen zu beobachten. Der LAI (Abbildung 70) wurde im Simulationsmodell so kalibriert, dass die simulierte und gemessene Bodensaugspannungen übereinstimmen (Abbildung 77 und Abbildung 78).

Sukzessionsvariante (Parzellen 5203, 5204)

Datengrundlage, Vegetation und Boden, Modellparameter

Tabelle 92:	Gauchsberg Sukzessionsvariante (Parzellen 5203, 5204), Datengrundlage Bodenhydrologie.
	Gauchsberg succession (parcels 5203, 5204), soil hydrologic data.

Bodensaugspannung	1993 - 2006: Einstichtensiometer in 20 - 70 cm Tiefe
Bodenwassergehalt	-
Datengrundlage Modellparameter Boden	Labor-pF-Kurven des Profils "BE 2"

Tabelle 93: Gauchsberg Sukzessionsvariante (Parzelle 5203), Modellparameter Boden. Gauchsberg succession (parcel 5203), model parameters soil.

Horizont	Tiefe	λ	Psie	Porosität	FK	PWP ¹⁾	nFK	K _{matrix}	К _{таkro}
	(cm)	(-)	(hPa)	(%)	(Vol.%)	(Vol.%)	(Vol.%)	(m/d)	(m/d)
Bv Sw, Sw	0 - 58	0,13	5,01	43,0	n.b.	11,97	n.b.	0,30	0,30
Sd, Cv Sd	58 - 100	0,12	4,39	32,5	n.b.	10,22	n.b.	0,05	0,05

¹⁾ Im Rahmen der Modellaufstellung nicht skelettkorrigiert (Begründung: TDR-Messungen der anderen Parzellen bestätigen die Richtigkeit der Labor-pF-Kurven und zeigen, dass der Skelettgehalt in den Bodenprofilen überschätzt wurde).

Tabelle 94: Gauchsberg Sukzessionsvariante (Parzelle 5204), Modellparameter Boden.

Gauchsberg succession (parcel 5204), model parameters soil.

Horizont	Tiefe	λ	Psie	Porosität	FK	PWP ¹⁾	nFK	K _{matrix}	K _{makro}
	(cm)	(-)	(hPa)	(%)	(Vol.%)	(Vol.%)	(Vol.%)	(m/d)	(m/d)
Bv Sw, Sw	0 - 53	0,13	5,01	43,0	n.b.	11,97	n.b.	0,30	0,30
Sd, Cv Sd	53 - 100	0,12	4,39	32,5	n.b.	10,22	n.b.	0,05	0,05

¹⁾ Im Rahmen der Modellaufstellung nicht skelettkorrigiert (Begründung: TDR-Messungen der anderen Parzellen bestätigen die Richtigkeit der Labor-pF-Kurven und zeigen, dass der Skelettgehalt in den Bodenprofilen überschätzt wurde).

Modellparameter Stauwasserabfluss siehe Tabelle 77

Tabelle 95:Gauchsberg Sukzessionsvariante (Parzellen 5203, 5204), Modellparameter Vegetation.Gauchsberg succession (parcels 5203, 5204), model parameters vegetation.

Blattflächenindex (m²/m²)*	siehe Abbildung 70
Bestandeshöhe (m)	siehe Abbildung 71
Interzeptionskapazität (mm/LAI)	0,2 (Wasser), 4 (Schnee)
r _s (Vegetationsperiode) (s/m)	120
kritischer Wassergehalt bei Luftmangel (Vol.%)	5
kritische Saugspannung bei Austrocknung (hPa)	300
maximale Wurzeltiefe (cm ab Oberkante Auflage)	70 (1992 - 1993) 75 (1994) 80 (ab 1995)
Wurzelverteilung	exp.
kompensatorische Wasseraufnahme bei Wasserstress	ja
Intensität kompensatorische Wasseraufnahme (-)	0,6

* Parameter mit saisonaler und/oder jährlicher Variation

Ergebnisse

Gauchsberg succession (parcel 5203), measured and simulated soil water suction.

Gauchsberg succession (parcel 5204), measured and simulated soil water suction.

Tabelle 96:Gauchsberg Sukzessionsvariante (Parzelle 5203), Bilanzkomponenten des Wasserhaushalts.Gauchsberg succession (parcel 5203), components of the water balance.

Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (165 cm) (mm)	lateraler Abfluss (0-165 cm) (mm)	Speicher- änderung (0-165 cm) (mm)
1993	744,6	41,1	0,0	183,6	230,5	86,6	148,4	54,3
1994	587,1	48,0	0,0	159,5	223,0	59,8	180,5	-83,8
1995	895,1	71,1	0,0	156,0	227,0	77,3	306,3	57,4
1996	569,3	61,4	0,0	127,4	216,4	68,8	121,2	-25,9
1997	559,0	54,3	0,0	132,9	225,5	17,1	123,7	5,6
1998	788,7	65,5	0,0	132,7	236,4	26,4	294,9	32,8
1999	735,1	69,0	0,0	136,8	296,3	56,8	196,9	-20,6
2000	942,6	66,9	0,0	154,5	225,5	2,0	453,2	40,5
2001	795,6	70,6	0,0	134,1	266,1	42,1	309,1	-26,3
2002	811,9	61,1	0,0	129,0	267,7	24,0	355,7	-25,6
2003	479,8	49,3	0,0	121,6	227,6	11,0	129,5	-59,2
2004	578,4	71,4	1,1	117,2	249,7	45,0	76,3	19,0
2005	638,5	82,1	0,0	116,1	285,5	88,1	50,5	16,2
2006	602,1	71,7	0,0	107,3	248,2	47,5	116,8	9,5
2007	770,9	61,4	0,0	119,3	273,3	127,9	157,5	31,5
2008	677,4	70,5	0,0	100,9	254,2	35,7	239,9	-23,7
2009	731,2	98,9	0,0	94,1	207,2	84,6	141,1	105,2
Summe	11907,3	1114,2	1,1	2223,0	4160,1	900,8	3401,4	106,9
Mittelwert	700,4	65,5	0,1	130,8	244,7	53,0	200,1	6,3

Abbildung 83: Gauchsberg, Sukzessionsvariante (Parzelle 5203), Bilanzkomponenten des Wasserhaushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung.

Gauchsberg, succession (parcel 5203), components of the water balance; top: values in mm/a; bottom: relative amounts (percent of bulk precipitation); DeltaS: change of storage.

Tabelle 97:Gauchsberg Sukzessionsvariante (Parzelle 5204), Bilanzkomponenten des Wasserhaushalts.Gauchsberg succession (parcel 5204), components of the water balance.

Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (165 cm) (mm)	lateraler Abfluss (0-165 cm) (mm)	Speicher- änderung (0-165 cm) (mm)
1993	744,6	24,8	0,0	222,7	173,3	120,9	151,9	51,0
1994	587,1	45,2	0,0	161,9	220,7	61,8	178,4	-80,9
1995	895,1	71,1	0,0	155,4	218,5	91,5	300,6	58,1
1996	569,3	61,4	0,0	128,1	216,4	67,7	130,1	-34,4
1997	559,0	54,3	0,0	132,9	224,3	12,9	122,0	12,6
1998	788,7	65,5	0,0	132,6	234,8	22,1	128,9	4,8
1999	735,1	69,0	0,0	136,9	295,2	28,2	202,8	3,1
2000	942,6	66,9	0,0	154,1	228,9	67,8	371,8	53,0
2001	795,6	70,6	0,0	133,6	259,7	59,3	313,3	-40,9
2002	811,9	61,1	0,0	128,0	258,6	33,4	356,6	-25,9
2003	479,8	49,3	0,0	121,2	222,9	9,9	128,7	-52,2
2004	578,4	71,4	0,0	117,1	249,4	27,9	94,1	18,5
2005	638,5	82,1	0,0	116,8	285,9	62,9	71,4	19,3
2006	602,1	71,7	1,0	107,7	248,1	42,6	122,9	8,0
2007	770,9	61,4	0,0	119,4	270,7	124,7	147,4	47,2
2008	677,4	70,5	0,0	100,8	252,8	57,8	239,3	-43,8
2009	731,2	98,9	0,0	94,2	204,5	43,3	175,2	115,1
Summe	11907,3	1095,1	1,0	2263,5	4064,7	934,8	3435,5	112,6
Mittelwert	700,4	64,4	0,1	133,1	239,1	55,0	202,1	6,6

Abbildung 84: Gauchsberg, Sukzessionsvariante (Parzelle 5204), Bilanzkomponenten des Wasser haushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung.

Gauchsberg, succession (parcel 5204), components of the water balance; top: values in mm/a; bottom: relative amounts (percent of bulk precipitation); DeltaS: change of storage.

Besonderheiten Sukzessionsvarianten

Keine Besonderheiten.

Traubeneiche (Parzellen 5303, 5304)

Datengrundlage, Vegetation und Boden, Modellparameter

Tabelle 98:Gauchsberg Traubeneiche (Parzellen 5303, 5304), Datengrundlage Bodenhydrologie.Gauchsberg Sessile oak (parcels 5203, 5204), soil hydrologic data.

Bodensaugspannung	1993 - 2006: Einstichtensiometer in 20 - 70 cm Tiefe
Bodenwassergehalt	-

Datengrundlage Modellparameter Boden

Labor-pF-Kurven des Profils "BE 2"

Tabelle 99:	Gauchsberg Traubeneiche (Parzelle 5303), Modellparameter Boden.
	Gauchsberg Sessile oak (parcel 5303), model parameters soil.

Horizont	Tiefe	λ	Psie	Porosität	FK	PWP ¹⁾	nFK	K _{matrix}	K _{makro}
	(cm)	(-)	(hPa)	(%)	(Vol.%)	(Vol.%)	(Vol.%)	(m/d)	(m/d)
Bv Sw, Sw	0 - 58	0,13	5,01	43,0	n.b.	11,97	n.b.	0,30	0,30
Sd, Cv Sd	58 - 100	0,12	4,39	32,5	n.b.	10,22	n.b.	0,05	0,05

¹⁾ Im Rahmen der Modellaufstellung nicht skelettkorrigiert (Begründung: TDR-Messungen der anderen Parzellen bestätigen die Richtigkeit der Labor-pF-Kurven und zeigen, dass der Skelettgehalt in den Bodenprofilen überschätzt wurde).

Tabelle 100: Gauchsberg Traubeneiche (Parzelle 5304), Modellparameter Boden.

Gauchsberg Sessile oak (parcel 5304), model parameters soil.

Horizont	Tiefe	λ	Psie	Porosität	FK	PWP ¹⁾	nFK	K _{matrix}	K _{makro}
	(cm)	(-)	(hPa)	(%)	(Vol.%)	(Vol.%)	(Vol.%)	(m/d)	(m/d)
Bv Sw, Sw	0 - 53	0,13	5,01	43,0	n.b.	11,97	n.b.	0,30	0,30
Sd, Cv Sd	53 - 100	0,12	4,39	32,5	n.b.	10,22	n.b.	0,05	0,05

¹⁾ Im Rahmen der Modellaufstellung nicht skelettkorrigiert (Begründung: TDR-Messungen der anderen Parzellen bestätigen die Richtigkeit der Labor-pF-Kurven und zeigen, dass der Skelettgehalt in den Bodenprofilen überschätzt wurde).

Modellparameter Stauwasserabfluss siehe Tabelle 77

Tabelle 101: Gauchsberg Traubeneiche (Parzellen 5303, 5304), Modellparameter Vegetation.

Gauchsberg Sessile oak (parcels 5303, 5304), model parameters vegetation.

Blattflächenindex (m²/m²)*	siehe Abbildung 70			
Bestandeshöhe (m)	siehe Abbildung 71			
Interzeptionskapazität (mm/LAI)	0,2 (Wasser), 4 (Schnee)			
r _s (Vegetationsperiode) (s/m)	120			
kritischer Wassergehalt bei Luftmangel (Vol.%)	5			
kritische Saugspannung bei Austrocknung (hPa)	300			
maximale Wurzeltiefe (cm ab Oberkante Auflage)	70			
Wurzelverteilung	exp.			
kompensatorische Wasseraufnahme bei Wasserstress	ja			
Intensität kompensatorische Wasseraufnahme (-)	0,6			

* Parameter mit saisonaler und/oder jährlicher Variation

Ergebnisse

Gauchsberg Sessile oak (parcel 5303), measured and simulated soil water suction.

Gauchsberg Sessile oak (parcel 5304), measured and simulated soil water suction.

Tabelle 102: Gauchsberg Traubeneiche (Parzelle 5303), Bilanzkomponenten des Wasserhaushalts.

Gauchsberg Sessile oak (parcel 5303), components of the water balance.

Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (165 cm) (mm)	lateraler Abfluss (0-165 cm) (mm)	Speicher- änderung (0-165 cm) (mm)
1993	744,6	13,6	0,0	262,0	105,4	0,0	364,6	-1,1
1994	587,1	16,6	0,0	240,5	125,0	31,5	227,1	-53,6
1995	895,1	28,8	0,0	236,6	154,7	129,1	323,9	22,1
1996	569,3	32,1	0,0	182,7	167,5	76,3	130,4	-19,7
1997	559,0	28,1	0,0	189,9	183,1	26,4	128,7	2,9
1998	788,7	38,0	0,0	188,6	207,1	28,2	301,4	25,4
1999	735,1	41,4	0,0	185,4	269,9	51,2	204,6	-17,5
2000	942,6	40,2	0,0	219,2	215,1	65,9	352,1	50,1
2001	795,6	46,2	0,0	177,6	241,2	53,4	307,1	-29,9
2002	811,9	38,6	0,0	173,4	238,8	36,4	358,3	-33,6
2003	479,8	34,9	0,0	161,1	201,1	10,3	131,3	-58,8
2004	578,4	49,5	0,0	156,7	225,2	46,2	80,9	19,8
2005	638,5	60,1	0,0	159,8	265,1	64,7	70,7	18,1
2006	602,1	51,7	1,1	149,8	219,5	27,7	145,3	7,1
2007	770,9	41,3	0,0	165,9	258,0	115,7	138,5	51,5
2008	677,4	51,1	0,0	140,1	235,9	53,5	241,8	-45,1
2009	731,2	72,6	0,0	138,3	195,5	73,2	148,7	102,9
Summe	11907,3	684,6	1,1	3127,7	3508,2	889,7	3655,4	40,6
Mittelwert	700,4	40,3	0,1	184,0	206,4	52,3	215,0	2,4

Abbildung 87: Gauchsberg, Traubeneiche (Parzelle 5303), Bilanzkomponenten des Wasser haushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung.

Gauchsberg, Sessile oak (parcel 5303), components of the water balance; top: values in mm/a; bottom: relative amounts (percent of bulk precipitation); DeltaS: change of storage.

Tabelle 103: Gauchsberg Traubeneiche (Parzelle 5304), Bilanzkomponenten des Wasserhaushalts.

Gauchsberg Sessile oak (parcel 5304), components of the water balance.

Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (165 cm) (mm)	lateraler Abfluss (0-165 cm) (mm)	Speicher- änderung (0-165 cm) (mm)
1993	744,6	13,3	0,0	261,5	102,9	0,0	370,4	-3,5
1994	587,1	16,4	0,0	235,1	121,1	28,3	234,3	-48,1
1995	895,1	28,3	0,0	234,3	151,2	131,2	327,3	22,8
1996	569,3	31,6	0,0	182,6	165,0	78,4	137,3	-25,6
1997	559,0	27,7	0,0	189,8	182,1	23,9	127,2	8,3
1998	788,7	37,8	0,0	188,4	203,7	26,8	333,0	-0,9
1999	735,1	41,2	0,0	185,7	267,4	27,0	210,1	3,8
2000	942,6	40,0	0,0	219,1	212,1	64,2	355,9	51,2
2001	795,6	46,0	0,0	176,9	236,2	58,2	312,2	-34,0
2002	811,9	38,5	0,0	173,5	237,7	29,0	365,3	-32,1
2003	479,8	34,7	0,0	160,4	197,1	9,9	130,5	-52,9
2004	578,4	49,4	0,0	157,2	225,6	28,3	98,7	19,3
2005	638,5	59,9	0,0	159,4	260,7	66,1	74,6	17,8
2006	602,1	51,6	1,2	149,9	219,1	26,4	145,5	8,4
2007	770,9	41,2	0,0	165,8	255,4	113,6	146,8	48,1
2008	677,4	50,9	0,0	139,8	234,0	52,7	242,7	-42,7
2009	731,2	72,4	0,0	138,4	193,7	66,4	160,0	100,3
Summe	11907,3	680,8	1,2	3117,9	3465,0	830,5	3771,8	40,2
Mittelwert	700,4	40,0	0,1	183,4	203,8	48,9	221,9	2,4

Abbildung 88: Gauchsberg Traubeneiche (Parzelle 5304), Bilanzkomponenten des Wasserhaushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung.

Gauchsberg Sessile oak (parcel 5304), components of the water balance; top: values in mm/a; bottom: relative amounts (percent of bulk precipitation); DeltaS: change of storage.

Besonderheiten Traubeneiche

Keine Besonderheiten

Birke (Parzellen 5403, 5404)

Datengrundlage, Vegetation und Boden, Modellparameter

Tabelle 104: Gauchsberg Birke (Parzellen 5403, 5404), Datengrundlage Bodenhydrologie.

Gauchsberg birch (parcels 5403, 5404), soil hydrologic data.

Bodensaugspannung	1993 - 2006: Einstichtensiometer in 20 - 70 cm Tiefe
Bodenwassergehalt	-
Datengrundlage Modellparameter Boden	Labor-pF-Kurven des Profils "BE 2"

Tabelle 105:	Gauchsberg Birke (Parzelle 5403), Modellparameter Boden.									
	Gauchsberg birch (parcel 5403), model parameters soil.									
Horizont	Tiefe	Tiefe λ Psie Porosität FK PWP ¹⁾ nFK K _{matrix} K _{makro}								
	(cm)	(-)	(hPa)	(%)	(Vol.%)	(Vol.%)	(Vol.%)	(m/d)	(m/d)	
Bv Sw, Sw	0 - 58	0,13	5,01	43,0	n.b.	11,97	n.b.	0,30	0,30	
Sd, Cv Sd	58 - 100	0,12	4,39	32,5	n.b.	10,22	n.b.	0,05	0,05	

¹⁾ Im Rahmen der Modellaufstellung nicht skelettkorrigiert (Begründung: TDR-Messungen der anderen Parzellen bestätigen die Richtigkeit der Labor-pF-Kurven und zeigen, dass der Skelettgehalt in den Bodenprofilen überschätzt wurde).

Tabelle 106: Gauchsberg Birke (Parzelle 5404), Modellparameter Boden.

Gauchsberg birch (parcel 5404), model parameters soil.

Horizont	Tiefe	λ	Psie	Porosität	FK	PWP ¹⁾	nFK	K _{matrix}	K _{makro}
	(cm)	(-)	(hPa)	(%)	(Vol.%)	(Vol.%)	(Vol.%)	(m/d)	(m/d)
Bv Sw, Sw	0 - 53	0,13	5,01	43,0	n.b.	11,97	n.b.	0,30	0,30
Sd, Cv Sd	53 - 100	0,12	4,39	32,5	n.b.	10,22	n.b.	0,05	0,05

¹⁾ Im Rahmen der Modellaufstellung nicht skelettkorrigiert (Begründung: TDR-Messungen der anderen Parzellen bestätigen die Richtigkeit der Labor-pF-Kurven und zeigen, dass der Skelettgehalt in den Bodenprofilen überschätzt wurde).

Modellparameter Stauwasserabfluss siehe Tabelle 77

Tabelle 107:Gauchsberg Birke (Parzellen 5403, 5404), Modellparameter Vegetation.Gauchsberg birch (parcels 5403, 5404), model parameters vegetation.

Blattflächenindex (m²/m²)*	siehe Abbildung 70
Bestandeshöhe (m)	siehe Abbildung 71
Interzeptionskapazität (mm/LAI)	0,2 (Wasser), 4 (Schnee)
r _s (Vegetationsperiode) (s/m)	120
kritischer Wassergehalt bei Luftmangel (Vol.%)	5
kritische Saugspannung bei Austrocknung (hPa)	300
maximale Wurzeltiefe (cm ab Oberkante Auflage)	75
Wurzelverteilung	exp.
kompensatorische Wasseraufnahme bei Wasserstress	ja
Intensität kompensatorische Wasseraufnahme (-)	0,6

* Parameter mit saisonaler und/oder jährlicher Variation

Ergebnisse

Abbildung 90: Gauchsberg Birke (Parzelle 5404), gemessene und simulierte Bodensaugspannung. Gauchsberg birch (parcel 5404), measured and simulated soil water suction.

Tabelle 108: Gauchsberg Birke (Parzelle 5403), Bilanzkomponenten des Wasserhaushalts.

Gauchsberg birch (parcel 5403), components of the water balance.

Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (165 cm) (mm)	lateraler Abfluss (0-165 cm) (mm)	Speicher- änderung (0-165 cm) (mm)
1993	744,6	21,5	0,0	242,1	156,9	0,0	276,2	47,9
1994	587,1	21,0	0,0	231,0	162,8	25,6	263,1	-116,5
1995	895,1	34,2	0,0	238,9	162,5	110,9	327,8	20,9
1996	569,3	36,9	0,0	182,1	159,9	73,3	113,5	3,5
1997	559,0	32,6	0,0	192,8	183,2	35,6	125,5	-10,6
1998	788,7	40,6	0,0	191,1	205,5	26,3	294,8	30,4
1999	735,1	43,8	0,0	188,2	267,9	52,3	198,5	-15,6
2000	942,6	40,8	0,0	226,8	185,7	1,8	448,2	39,3
2001	795,6	48,3	0,0	180,8	238,9	42,2	308,6	-23,1
2002	811,9	38,8	0,0	182,1	239,7	23,8	347,1	-19,6
2003	479,8	36,3	0,0	162,0	200,7	11,4	141,0	-71,5
2004	578,4	51,8	0,0	158,6	224,2	44,3	80,0	19,6
2005	638,5	64,7	0,0	161,0	261,4	67,3	66,3	17,8
2006	602,1	53,5	1,0	154,8	223,7	48,6	110,9	9,5
2007	770,9	42,3	0,0	168,1	248,7	104,8	174,3	32,6
2008	677,4	56,4	0,0	143,3	230,3	35,4	238,0	-25,9
2009	731,2	75,5	0,0	139,5	189,1	90,0	132,5	104,6
Summe	11907,3	738,8	1,0	3143,2	3541,1	793,4	3646,3	43,4
Mittelwert	700,4	43,5	0,1	184,9	208,3	46,7	214,5	2,6

Abbildung 91: Gauchsberg Birke (Parzelle 5403), Bilanzkomponenten des Wasserhaushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung.

Gauchsberg birch (parcel 5403), components of the water balance; top: values in mm/a; bottom: relative amounts (percent of bulk precipitation); DeltaS: change of storage.

Tabelle 109: Gauchsberg Birke (Parzelle 5404), Bilanzkomponenten des Wasserhaushalts.

Gauchsberg birch (parcel 5404), components of the water balance.

Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (165 cm) (mm)	lateraler Abfluss (0-165 cm) (mm)	Speicher- änderung (0-165 cm) (mm)
1993	744,6	21,5	0,0	241,0	156,0	0,0	278,1	48,0
1994	587,1	21,0	0,0	230,1	161,2	25,3	264,2	-114,8
1995	895,1	34,2	0,0	236,8	158,6	112,3	330,3	22,9
1996	569,3	36,9	0,0	184,1	171,5	74,2	118,9	-16,3
1997	559,0	32,6	0,0	192,8	182,6	19,9	123,7	7,4
1998	788,7	40,6	0,0	190,8	203,9	24,4	303,3	25,8
1999	735,1	43,8	0,0	188,4	266,7	48,0	202,2	-13,9
2000	942,6	40,8	0,0	225,5	189,3	67,8	368,8	50,4
2001	795,6	48,3	0,0	180,2	233,9	56,9	313,9	-37,4
2002	811,9	38,8	0,0	179,1	231,4	33,6	348,9	-19,9
2003	479,8	36,3	0,0	161,4	196,4	10,3	140,2	-64,7
2004	578,4	51,8	0,0	159,0	223,7	28,3	96,3	19,4
2005	638,5	64,7	0,0	160,8	257,7	68,7	69,3	17,3
2006	602,1	53,5	1,0	154,9	221,4	44,4	115,7	11,2
2007	770,9	42,3	0,0	167,9	246,9	124,4	143,0	46,3
2008	677,4	56,4	0,0	143,2	228,8	53,2	235,7	-40,0
2009	731,2	75,5	0,0	139,7	187,4	81,6	146,8	100,2
Summe	11907,3	738,8	1,0	3135,6	2517,4	873,3	3599,2	42,0
Mittelwert	700,4	43,5	0,1	184,4	206,9	51,4	211,7	2,5
Abbildung 92: Gauchsberg, Birke (Parzelle 5404), Bilanzkomponenten des Wasserhaushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung.

Gauchsberg, birch (parcel 5404), components of the water balance; top: values in mm/a; bottom: relative amounts (percent of bulk precipitation); DeltaS: change of storage.

Besonderheiten Traubeneiche

Im Jahr 1996 ist auf der Parzelle Nr. 5403 ein singuläres Ausbleiben des sommerlichen Tensionsanstiegs im Unterboden zu verzeichnen. Dies konnte im Modell nur durch eine Begrenzung des Wurzelwasserentzuges in diesem Jahr auf 0 – 55 cm Tiefe nachvollzogen werden. Es ist allerdings kaum wahrscheinlich, dass es sich hierbei um ein Absterben von Feinwurzeln aufgrund eines durchgehend hohen Stauwasserspiegels handelt: Die Niederschläge im Jahr 1996 sind relativ gering und es tritt in diesem Zeitraum nur sehr wenig simuliertes Stauwasser auf.

3.3.3 Kirchberg

Standort und Bestand

Die Versuchsfläche Kirchberg befindet sich auf der östlichen Hunsrückhochfläche in einer Seehöhe von 438 – 456 mm NN. Das Gelände ist leicht (2°) nach W geneigt, wobei sich die Versuchsparzellen in einer ausgedehnten Mulde befinden. Folgende Klimakennwerte der Periode von 1960 bis 1990 kennzeichnen die Versuchsfläche: Der Jahresniederschlag von 675 bis 750 mm fällt zu 43 % in der Vegetationszeit. 12 % des Jahresniederschlages fallen als Schnee. Die mittlere Jahrestemperatur betrug in der Periode von 1960 – 1990 noch 7,0°C, wobei die aktuellen Messungen von 1988 bis 2009 eine mittlere Jahrestemperatur von mittlerweile 8,1°C belegen. Die Vegetationszeittemperatur betrug in der Periode von 1960 – 1990 13,8°C und die mittlere Jahresschwankung der Temperatur 16,5°C. Die Vegetationszeit (Tage >10°C) dauerte im Mittel 140 Tage. Frosttage kamen bis Mitte Mai – und zum Teil auch noch wesentlich später - vor, der erste Frost setzte Mitte Oktober wieder ein.

Als natürliche Waldgesellschaft wurde hier ein artenarmer Hainbuchen/Birken-Stieleichenwald angesprochen. Bei dem Boden handelt es sich um einen im Untergrund skelettarmen Pseudogley mit Übergängen zum Stagnogley aus schluffigtonigem Lehm. Als nutzbare Wasserspeicherkapazität wurden 54 – 70 mm angesprochen.

Datengrundlage und Meteorologie (alle Versuchsvarianten)

Tabelle 110:	Kirchberg, Datengrundlage Meteor Kirchberg, data basis meteorology.	ologie.
	Klimastation	Kirchberg (FAWF-Nr. 120a701)
	Lage der Klimastation	440 m über NN, eben ca. 0,7 ha große Grasfläche inmitten der Versuchsanlage in einem Waldgebiet der östlichen Hunsrück-Hochfläche
	Messvariablen	LT, LF, WS, FNS, GS
	Messsysteme FNS	Kippwaage, Pluvio, Hellmann, Bulksampler
E	Bestandesniederschlag	Bulksampler
	Besonderheiten	ab 2007 Unsicherheiten beim FNS
Zeitraum m	it geprüften und lückenersetzten Daten (Tageswerte)	01.01.1988 - 31.12.2009
Мо	dellantrieb Niederschlag	FNS
Windk	orrekturfaktor (Coupmodel)	1,05

					cc(h)(l, 2)
Janr	LI (°C)	LF (%)	ws (m/s)	FINS (mm/a)	GS (W/m ⁻)
1988	8,1	86	2,8	662	115
1989	8,3	85	2,4	566	125
1990	8,4	84	2,7	634	124
1991	7,5	82	2,6	529	123
1992	8,3	83	2,6	566	118
1993	7,5	87	2,7	896	122
1994	10,0	86	2,8	697	119
1995	8,1	87	2,6	892	124
1996	6,4	86	2,4	530	117
1997	8,4	87	2,4	693	125
1998	8,5	88	2,7	787	118
1999	8,6	85	2,9	778	123
2000	8,3	87	2,6	1057	117
2001	7,7	85	2,6	907	119
2002	8,1	85	2,6	949	119
2003	8,1	80	2,4	735	139
2004	7,4	86	1,9	833	126
2005	7,9	86	1,9	819	127
2006	8,3	84	2,0	748	130
2007	8,5	82	2,1	1000	120
2008	7,9	83	2,0	772	113
2009	8,0	84	1,9	869	115
Mittelwert	8,1	85	2,4	769	122

Tabelle 111: Kirchberg, meteorologische Daten.

Kirchberg, meteorologic data.

Besonderheiten Traubeneiche

Analog zu Gauchsberg (vgl. Abschnitt 3.3.2) waren auch in Kirchberg beim Simulationsbeginn im Jahr 1993 die durch den Orkan Wiebke im Februar/März 1990 entstandenen Kahlflächen teilweise bereits von aufwachsender Vegetation bedeckt (Abbildung 94).

Die Modellparameter für den lateralen Stauwasserabfluss konnten am Standort Kirchberg für alle Versuchsvarianten einheitlich parametrisiert werden (Tabelle 114). Ab 2007 bestehen Unsicherheiten bei den Freilandniederschlägen der Station Kirchberg (Messfehler Pluvio, fehlende Hellmannwerte). Die Plausibilität der Tensiometerdaten war insgesamt eingeschränkt: Neben einer Schaftkorrektur wurde im Rahmen der Auswertung eine pauschale empirische Korrektur von 150 hPa durchgeführt. Lediglich im Jahr 1995 war keine Korrektur erforderlich. Im Juni 2007 wurden die TDR-Messungen eingestellt, bereits ab 2005 bestehen größere zeitliche Lücken in den Messdaten.

Fichtenaltbestand (Parzellen 5103, 5104)

Datengrundlage, Vegetation und Boden, Modellparameter

Tabelle 112:Kirchberg Fichtenaltbestand (Parzellen 5103, 5104), Datengrundlage Bodenhydrologie.
Kirchberg Norway spruce mature stand (parcels 5103, 5104), soil hydrologic data.

Bodensaugspannung	1993-1995: Einstichtensiometer in 15-50 cm Tiefe
Bodenwassergehalt	-
Datengrundlage Modellparameter Boden	Labor-pF-Kurven des Profils "BE 4"

Tabelle 113:Kirchberg Fichtenaltbestand (Parzellen 5103, 5104), Modellparameter Boden.Kirchberg Norway spruce mature stand (parcels 5103, 5104), model parameters soil.

Horizont	Tiefe	λ	Psie	Porosität	FK	PWP ¹⁾	nFK	K _{matrix}	K _{makro}
	(cm)	(-)	(hPa)	(%)	(Vol.%)	(Vol.%)	(Vol.%)	(m/d)	(m/d)
Ah,BvSw, Sw	0 - 24	0,14	5,22	44,1	n.b.	12,97	n.b.	0,30	0,30
Sw, Sd	24 - 100	0,10	3,87	43,7	n.b.	17,71	n.b.	0,09	0,09

Tabelle 114:Kirchberg, Modellparameter Stauwasserabfluss (alle Versuchsvarianten).Kirchberg, model parameters lateral drain.

Variante	Parzellen-Nr.	q1	z1	q2	z2
		peakflow	peaklevel	baseflow	baselevel
		(mm)	(m)	(mm)	(m)
alle Varianten	alle	4,0	-0,4	1,0	-3,0

Tabelle 115: Kirchberg, Fichtenaltbestand (Parzellen 5103, 5104), Modellparameter Vegetation.

Kirchberg, Norway spruce mature stand (parcels 5103, 5104), model parameters vegetation.

Blattflächenindex (m²/m²)*	siehe Abbildung 93
Bestandeshöhe (m)	siehe Abbildung 94
Interzeptionskapazität (mm/LAI)	0,35 (Wasser), 4 (Schnee)
r _s (Vegetationsperiode) (s/m)	100
kritischer Wassergehalt bei Luftmangel (Vol.%)	5
kritische Saugspannung bei Austrocknung (hPa)	300
maximale Wurzeltiefe (cm ab Oberkante Auflage)	70
Wurzelverteilung	exp.
kompensatorische Wasseraufnahme bei Wasserstress	ја
Intensität kompensatorische Wasseraufnahme (-)	0,6

* Parameter mit saisonaler und/oder jährlicher Variation

Abbildung 94: Kirchberg simulierte und gemessene Bestandeshöhe (alle Versuchsvarianten). *Kirchberg simulated and measured stand hight (all plots).*

Ergebnisse Fichtenaltbestand

Kirchberg Norway spruce mature stand (parcels 5103, 5104), measured and simulated interception.							
	FNS korr. (mm) Messwert	BNS (mm) Messwert	Interzeption (mm) Messwert	Interzeption (mm) Simulation	Abweichung (mm) Messwert/Simulation		
1993	941	609	331	285	46		
1994	732	443	289	289	0		
1995	937	642	295	261	34		
1996	557	420	136	182	-45		
1997	728	521	207	232	-25		
1998	826	517	309	321	-11		
1999	817	474	343	308	35		
2000	1110	768	342	358	-16		
2001	952	547	405	347	57		
2002	996	691	305	324	-20		
2003	772	-	-	261	-		
2004	875	500	375	322	53		
2005	860	461	399	312	86		
2006	786	435	350	357	-7		
2007	1049	459	590	377	213		
2008	810	-	-	390	-		
2009	913	-	-	395	-		
Summe ¹⁾	12166	7487	4676	4275	400		
Mittelwert ¹⁾	869	535	334	305	29		

 Tabelle 116: Kirchberg Fichtenaltbestand (Parzellen 5103, 5104), gemessene und simulierte Interzeption.

1) ohne 2003, 2008 und 2009

Abbildung 95: Kirchberg, Fichtenaltbestand (Parzellen 5103, 5104), gemessene und simulierte Bodensaugspannung.

Kirchberg Norway spruce mature stand (parcels 5103, 5104), measured and simulated soil water suction.

Abbildung 96: Kirchberg Fichtenaltbestand (Parzellen 5103, 5104), gemessener und simulierter Bodenwassergehalt.

Kirchberg Norway spruce mature stand (parcels 5103, 5104), measured and simulated soil water content.

Tabelle 117: Kirchberg Fichtenaltbestand(Parzellen 5103, 5104), Bilanzkomponenten des Wasserhaushalts.

Kirchberg Norway spruce mature stand (parcels 5103, 5104), components of the water balance.

Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (165 cm) (mm)	lateraler Abfluss (0-165 cm) (mm)	Speicher- änderung (0-165 cm) (mm)
1993	940,5	284,9	0,0	38,2	257,5	30,5	165,1	164,4
1994	732,1	289,4	0,0	43,1	253,2	102,6	155,6	-111,8
1995	936,7	261,3	0,2	48,9	222,9	52,8	341,9	8,7
1996	556,8	181,8	0,0	50,4	238,3	29,7	48,1	8,5
1997	728,0	232,1	0,0	32,9	253,1	58,6	133,9	17,4
1998	826,0	320,6	0,0	30,5	220,5	129,1	119,9	5,3
1999	817,2	307,7	0,0	37,4	247,7	167,6	108,2	-51,4
2000	1110,2	358,3	0,0	38,7	251,3	165,5	216,8	79,6
2001	952,0	347,4	0,0	36,7	254,4	179,9	193,7	-60,1
2002	996,2	324,4	0,0	33,8	256,2	79,3	285,6	16,9
2003	771,9	260,6	0,0	36,0	232,0	51,4	201,9	-10,1
2004	874,5	322,0	0,0	32,7	260,6	79,9	123,5	56,0
2005	859,6	312,3	0,0	28,9	254,8	194,1	146,0	-76,3
2006	785,7	357,3	0,0	33,8	295,0	18,4	93,4	-12,2
2007	1049,5	377,2	0,0	38,0	300,3	73,8	228,5	31,6
2008	810,3	389,9	0,0	37,5	248,7	83,3	144,0	-93,1
2009	912,8	394,8	0,0	32,3	264,8	14,4	125,0	81,6
Summe	14660,2	5322,0	0,2	629,7	4311,3	1510,9	2831,1	54,9
Mittelwert	862,4	313,1	0,0	37,0	253,6	88,9	166,5	3,2

¹⁾ windkorrigiert

Abbildung 97: Kirchberg, Fichtenaltbestand (Parzellen 5103, 5104), Bilanzkomponenten des Wasserhaushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung.

Kirchberg, Norway spruce mature stand (parcels 5103, 5104), components of the water balance; top: values in mm/a; bottom: relative amounts (percent of bulk precipitation); DeltaS: change of storage.

Abbildung 98: Kirchberg Fichtenaltbestand (Parzellen 5103, 5104), simulierter und gemessener Bodenwasservorrat.

Kirchberg Norway spruce mature stand (parcels 5103, 5104), simulated and measured water storage.

Besonderheiten Fichtenaltbestand

Analog zu der in Gauchsberg beschriebenen Situation weicht die simulierte Interzeption aufgrund von Ungenauigkeiten beim gemessenen Bestandesniederschlag erheblich von den Messwerten ab (Tabelle 116).

Die Ursache für den starken Rückgang des simulierten Blattflächenindex (LAI) im Fichtenaltbestand in den Wintern 1994/95 und 1995/96 könnte z.B. Schneebruch sein (Abbildung 93). Eine andere Möglichkeit wären auch Messfehler des Freiland- oder Bestandesniedersschlags, welche zu Folgefehlern bei der inversen Optimierung des LAI führen.

Eichenaltbestand (Parzellen 5503, 5504)

Datengrundlage, Vegetation und Boden, Modellparameter

Tabelle 118:Kirchberg Eichenaltbestand (Parzellen 5503, 5504), Datengrundlage Bodenhydrologie.Kirchberg oak mature stand (parcels 5503, 5504), soil hydrologic data.

Bodensaugspannung	-
Bodenwassergehalt	1998 - 2007: TDR in 15 - 50 cm Tiefe
Datengrundlage Modellparameter Boden	Labor-pF-Kurven des Profils "BE 1"

Tabelle 119: Kirchberg Eichenaltbestand (Parzellen 5503, 5504), Modellparameter Boden.

Kirchberg oak mature stand (parcels 5503, 5504), model parameters soil.

Horizont	Tiefe	λ	Psie	Porosität	FK	PWP ¹⁾	nFK	K _{matrix}	K _{makro}
	(cm)	(-)	(hPa)	(%)	(Vol.%)	(Vol.%)	(Vol.%)	(m/d)	(m/d)
Ah, Sw, Sd	0 - 35	0,05	2,19	43,1	n.b.	24,68	n.b.	0,30	0,30
Sd	35 - 100	0,06	3,92	40,1	n.b.	22,34	n.b.	0,05	0,05

¹⁾ Im Rahmen der Modellaufstellung nicht skelettkorrigiert (Begründung: TDR-Messungen bestätigen die Richtigkeit der Labor-pF-Kurve und zeigen, dass der Skelettgehalt in den Bodenprofilen überschätzt wurde).

Modellparameter Stauwasserabfluss siehe Tabelle 114

Tabelle 120:Kirchberg, Eichenaltbestand (Parzellen 5503, 5504), Modellparameter Vegetation.Kirchberg, oak mature stand (parcels 5503, 5504), model parameters vegetation.

Blattflächenindex (m²/m²)*	siehe Abbildung 93
Bestandeshöhe (m)	siehe Abbildung 94
Interzeptionskapazität (mm/LAI)	0,37 (Wasser), 4 (Schnee)
r _s (Vegetationsperiode) (s/m)	80
kritischer Wassergehalt bei Luftmangel (Vol.%)	5
kritische Saugspannung bei Austrocknung (hPa)	300
maximale Wurzeltiefe (cm ab Oberkante Auflage)	70
Wurzelverteilung	exp.
kompensatorische Wasseraufnahme bei Wasserstress	ja
Intensität kompensatorische Wasseraufnahme (-)	0,6

* Parameter mit saisonaler und/oder jährlicher Variation

Ergebnisse Eichenaltbestand

Tabelle 121:	Kirchberg Eichenaltbestand (Parzellen 5503, 5504), gemessene und simulierte Interzeption. Kirchberg oak mature stand (parcels 5503, 5504), measured and simulated interception.						
	FNS korr. (mm) Messwert	BNS (mm) Messwert	Interzeption (mm) Messwert	Interzeption (mm) Simulation	Abweichung (mm) Messwert/Simulation		
1998	826	605	221	222	-1		
1999	817	569	248	218	29		
2000	1110	855	255	260	-4		
2001	952	625	327	267	60		
2002	996	749	248	231	16		
2003	772			207			
2004	875	597	277	256	21		
2005	860	527	333	235	98		
2006	786	530	256	245	11		
2007	1049	560	489	266	223		
2008	810	-	-	262	-		
2009	913	-	-	303	-		
Summe ¹⁾	8271	5617	2654	2200	453		
Mittelwert ¹⁾	591	401	190	157	32		

1) ohne 2003, 2008 und 2009

Abbildung 99: Kirchberg, Eichenaltbestand (Parzellen 5503, 5504), gemessener und simulierter Bodenwassergehalt.

Kirchberg, oak mature stand (parcels 5503, 5504), measured and simulated soil water content.

Tabelle 122: Kirchberg Eichenaltbestand(Parzellen 5503, 5504), Bilanzkomponenten des Wasserhaushalts.

Kirchberg oak mature stand (parcels 5503, 5504), components of the water balance.

Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (165 cm) (mm)	lateraler Abfluss (0-165 cm) (mm)	Speicher- änderung (0-165 cm) (mm)
1993	940,5	232,7	0,0	45,8	203,7	64,3	279,2	114,8
1994	732,1	219,8	0,0	54,7	213,8	76,7	260,0	-92,8
1995	936,7	243,7	0,8	50,9	174,7	57,7	406,4	2,4
1996	556,8	188,4	0,0	44,6	193,6	53,9	79,8	-3,5
1997	728,0	194,2	0,0	42,0	222,4	78,5	210,0	-19,0
1998	826,0	221,6	0,0	47,5	183,7	81,3	297,8	-5,8
1999	817,2	218,5	0,0	53,1	194,6	99,0	219,6	32,5
2000	1110,2	259,8	0,0	53,7	252,8	154,3	384,3	5,2
2001	952,0	267,1	0,0	49,4	198,0	110,0	336,7	-9,1
2002	996,2	231,2	0,0	50,0	220,5	90,2	419,3	-15,0
2003	771,9	206,7	0,0	48,2	198,9	42,7	260,7	14,7
2004	874,5	256,2	0,0	43,9	262,3	76,6	237,8	-2,3
2005	859,6	235,3	0,0	41,8	208,4	126,4	243,8	4,0
2006	785,7	244,8	0,0	46,5	249,7	90,0	157,8	-3,1
2007	1049,5	266,5	0,0	55,8	253,9	90,1	381,3	1,8
2008	810,3	261,7	0,0	54,4	201,6	101,8	248,1	-57,2
2009	912,8	303,2	0,0	45,7	242,8	36,2	248,9	36,0
Summe	14660,2	4051,3	0,8	828,2	3675,3	1429,8	4671,4	3,4
Mittelwert	862,4	238,3	0,0	48,7	216,2	84,1	274,8	0,2

¹⁾ windkorrigiert

Abbildung 100: Kirchberg Eichenaltbestand (Parzellen 5503, 5504), Bilanzkomponenten des Wasserhaushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung.

Kirchberg oak mature stand (parcels 5503, 5504), components of the water balance; top: values in mm/a; bottom: relative amounts (percent of bulk precipitation); DeltaS: change of storage.

Besonderheiten Eichenaltbestand

Im Gegensatz zum Standort Gauchsberg (vgl. Abschnitt 3.3.2) konnte beim Eichenaltbestand Kirchberg eine für Laubwälder typische unterjährige Variation des Blattflächenindexes angenommen werden. Die Mess- und daher auch die hiervon abgeleiteten Simulationsergebnisse für den Eichenaltbestand Kirchberg weisen bezüglich der Interzeption somit einen höheren Plausibilitätsgrad auf, als dies in Gauchsberg der Fall ist.

Ab 2005 weicht die simulierte Interzeption aufgrund von Ungenauigkeiten beim gemessenen Bestandesniederschlag erheblich von den Messwerten ab (Tabelle 121).

Null-/Freifläche (Parzellen 5003, 5004)

Datengrundlage, Vegetation und Boden, Modellparameter

Tabelle 123:Kirchberg Null-/Freifläche (Parzellen 5003, 5004), Datengrundlage Bodenhydrologie.Kirchberg open area (parcels 5003, 5004), soil hydrologic data.

Bodensaugspannung	1993 - 1995: Einstichtensiometer in 15 - 50 cm Tiefe
Bodenwassergehalt	1996 - 2007: TDR in 15 - 50 cm Tiefe
Datengrundlage Modellparameter Boden	Labor-pF-Kurven des Profils "BE 1"

Tabelle 124: Kirchberg Null-/Freifläche (Parzelle 5003, 5004), Modellparameter Boden.

Kirchberg oak mature stand (parcel 5003, 5004), model parameters soil.

Horizont	Tiefe	λ	Psie	Porosität	FK	PWP ¹⁾	nFK	K _{matrix}	K _{makro}
	(cm)	(-)	(hPa)	(%)	(Vol.%)	(Vol.%)	(Vol.%)	(m/d)	(m/d)
Ah Sw, Sd	0 - 35	0,05	2,19	43,1	n.b.	24,68	n.b.	0,30	0,30
Sd	35 - 100	0,06	3,92	40,1	n.b.	22,34	n.b.	0,05	0,05

¹⁾ Im Rahmen der Modellaufstellung nicht skelettkorrigiert (Begründung: TDR -Messungen der anderen Parzellen bestätigen die Richtigkeit der Labor-pF-Kurven und zeigen, dass der Skelettgehalt in den Bodenprofilen überschätzt wurde).

Modellparameter Stauwasserabfluss siehe Tabelle 77

Tabelle 125:	Kirchberg Null-/Freifläche (Parzellen 5003, 5004), Modellparameter Vegetation.
	Kirchberg open area (parcels 5003, 5004), model parameters vegetation.

Blattflächenindex (m²/m²)*	siehe Abbildung 93
Bestandeshöhe (m)	siehe Abbildung 94
Interzeptionskapazität (mm/LAI)	0,2 (Wasser), 4 (Schnee)
r _s (Vegetationsperiode) (s/m)	50
kritischer Wassergehalt bei Luftmangel (Vol.%)	5
kritische Saugspannung bei Austrocknung (hPa)	300
maximale Wurzeltiefe (cm ab Oberkante Auflage)	0 (Winter) - 70 (Sommer)
Wurzelverteilung	exp.
kompensatorische Wasseraufnahme bei Wasserstress	ja
Intensität kompensatorische Wasseraufnahme (-)	0,6

* Parameter mit saisonaler und/oder jährlicher Variation

Ergebnisse

Kirchberg open area (parcels 5003, 5004), measured and simulated soil water suction.

Tabelle 126:Kirchberg Null-/Freiflächen (Parzellen 5503, 5504), Bilanzkomponenten des
Wasserhaushalts.

Kirchberg open area (parcels 5503, 5504), components of the water balance.

Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (165 cm) (mm)	lateraler Abfluss (0-165 cm) (mm)	Speicher- änderung (0-165 cm) (mm)
1993	940,5	6,2	0,7	265,3	75,1	77,0	394,1	122,2
1994	732,1	0,9	1,6	327,4	14,8	120,0	364,3	-97,0
1995	936,7	4,2	3,1	283,1	69,2	97,8	481,8	-2,5
1996	556,8	6,7	0,0	211,8	86,8	59,7	192,9	-1,0
1997	728,0	7,2	0,0	261,8	75,2	127,6	258,0	-1,8
1998	826,0	6,1	0,0	288,1	69,5	137,8	335,0	-10,7
1999	817,2	7,2	0,0	263,7	108,0	152,6	260,1	25,6
2000	1110,2	6,5	0,0	326,7	62,8	227,8	496,1	-9,8
2001	952,0	5,3	0,0	272,3	83,0	148,9	424,3	18,2
2002	996,2	5,8	0,0	279,5	73,8	137,5	506,5	-6,7
2003	771,9	4,9	0,0	271,4	77,9	81,5	335,4	0,7
2004	874,5	6,2	0,0	301,4	61,1	149,1	373,0	-16,3
2005	859,6	5,6	0,0	279,1	71,6	134,8	342,5	26,1
2006	785,7	3,1	0,0	299,9	80,0	147,9	281,0	-26,1
2007	1049,5	6,1	0,0	319,8	78,4	166,5	437,7	41,0
2008	810,3	5,4	0,0	296,8	76,1	150,0	330,6	-48,6
2009	912,8	11,5	1,0	295,6	58,2	130,7	379,0	36,8
Summe	14660,2	98,9	6,4	4844,0	1221,4	2247,0	6192,2	50,0
Mittelwert	862,4	5,8	0,4	284,9	71,8	132,2	364,2	2,9

¹⁾ windkorrigiert

Abbildung 104: Kirchberg Null-/Freiflächen (Parzellen 5503, 5504), Bilanzkomponenten des Wasserhaushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung.

Kirchberg open area (parcels 5503, 5504), components of the water balance; top: values in mm/a; bottom: relative amounts (percent of bulk precipitation); DeltaS: change of storage.

Kirchberg open area (parcels 5503, 5504), measured and simulated soil water storrage.

Besonderheiten Null-/Freiflächen

Analog zu Gauchsberg (vgl. Abschnitt 3.3.2) scheint auch an der Null-/Freifläche in Kirchberg ein kurzzeitiges Aufwachsen von Vegetation stattzufinden. Entsprechende Hinweise geben die Messwerte der Bodensaugspannung aus 50 cm Tiefe (Messzeitraum 1993 – 1995, Abbildung 102).

Die mit COUPMODEL in 15cm Tiefe simulierten Tensionen liegen deutlich höher als die gemessenen Werte (Abbildung 102). Sehr gute Simulationsergebnisse für den Bodenwassergehalt (50 cm Tiefe) und -vorrat (0 – 75 cm Tiefe, Abbildung 103) zeigen jedoch, dass Widersprüche zwischen Tensiometerdaten und simulierten Bodensaug-spannungen in erster Linie durch Plausibilitätsprobleme der Tensiometerwerte bedingt sind.

Sukzessionsvariante (Parzellen 5203, 5204)

Datengrundlage, Vegetation und Boden, Modellparameter

Tabelle 127:	Kirchberg Sukzessionsvariante (Parzellen 5203, 5204), Datengrundlage Bodenhydrologie.
	Kirchberg succession (parcels 5203, 5204), soil hydrologic data.

Bodensaugspannung	1993 - 1995: Einstichtensiometer in 15 - 50 cm Tiefe
Bodenwassergehalt	1996 - 2007: TDR in 15 - 50 cm Tiefe
Datengrundlage Modellparameter Boden	Labor-pF-Kurven des Profils "BE 1"

Tabelle 128:	Kirchberg	Kirchberg Sukzessionsvariante (Parzelle 5203), Modellparameter Boden.							
	Kirchberg	Kirchberg succession (parcel 5203), model parameters soil.							
Horizont	Tiefe	λ	Psie	Porosität	FK	PWP ¹⁾	nFK	К _{matrix}	K _{makro}
	(cm)	(-)	(hPa)	(%)	(Vol.%)	(Vol.%)	(Vol.%)	(m/d)	(m/d)
Ah Sw, Sd	0 - 30	0,05	2,19	43,1	n.b.	24,68	n.b.	0,30	0,30
Sd	30 - 100	0,06	3,92	40,1	n.b.	22,34	n.b.	0,05	0,05

¹⁾ Im Rahmen der Modellaufstellung nicht skelettkorrigiert (Begründung: TDR-Messungen der anderen Parzellen bestätigen die Richtigkeit der Labor-pF-Kurven und zeigen, dass der Skelettgehalt in den Bodenprofilen überschätzt wurde).

Tabelle 129:	Kirchberg Sukzessionsvariante	(Parzelle 5204),	, Modellparameter Boden.
--------------	-------------------------------	------------------	--------------------------

Kirchberg succession (parcel 5204), model parameters soil.

Horizont	Tiefe	λ	Psie	Porosität	FK	PWP ¹⁾	nFK	K _{matrix}	K _{makro}
	(cm)	(-)	(hPa)	(%)	(Vol.%)	(Vol.%)	(Vol.%)	(m/d)	(m/d)
Ah Sw, Sd	0 - 35	0,05	2,19	43,1	n.b.	24,68	n.b.	0,30	0,30
Sd	35 - 100	0,06	3,92	40,1	n.b.	22,34	n.b.	0,05	0,05

¹⁾ Im Rahmen der Modellaufstellung nicht skelettkorrigiert (Begründung: TDR-Messungen der anderen Parzellen bestätigen die Richtigkeit der Labor-pF-Kurven und zeigen, dass der Skelettgehalt in den Bodenprofilen überschätzt wurde).

Modellparameter Stauwasserabfluss siehe Tabelle 114

Tabelle 130: Kirchberg Sukzessionsvariante (Parzellen 5203, 5204), Modellparameter Vegetation. Kirchberg succession (parcels 5203, 5204), model parameters vegetation.

Blattflächenindex (m²/m²)*	siehe Abbildung 93
Bestandeshöhe (m)	siehe Abbildung 94
Interzeptionskapazität (mm/LAI)	0,2 (Wasser), 4 (Schnee)
r _s (Vegetationsperiode) (s/m)	65
kritischer Wassergehalt bei Luftmangel (Vol.%)	5
kritische Saugspannung bei Austrocknung (hPa)	300
maximale Wurzeltiefe (cm ab Oberkante Auflage)	70
Wurzelverteilung	exp.
kompensatorische Wasseraufnahme bei Wasserstress	ja
Intensität kompensatorische Wasseraufnahme (-)	0,6

* Parameter mit saisonaler und/oder jährlicher Variation

Ergebnisse

Kirchberg succession (parcel 5203), measured and simulated soil water suction.

Abbildung 107: Kirchberg Sukzessionsvariante (Parzelle 5204), gemessene und simulierte Bodensaugspannung.

Kirchberg succession (parcel 5204), measured and simulated soil water suction.

Kirchberg succession (parcel 5203), measured and simulated soil water content.

Abbildung 109: Kirchberg Sukzessionsvariante (Parzelle 5204), gemessener und simulierter Bodenwassergehalt.

Kirchberg succession (parcel 5204), measured and simulated soil water content.

Tabelle 131: Kirchberg Sukzessionsvariante (Parzelle 5203), Bilanzkomponenten des Wasserhaushalts.

Kirchberg succession (parcel 5203), components of the water balance.

Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (165 cm) (mm)	lateraler Abfluss (0-165 cm) (mm)	Speicher- änderung (0-165 cm) (mm)
1993	940,5	9,8	0,6	273,3	69,4	79,7	387,8	120,0
1994	732,1	12,6	1,5	292,4	89,7	98,5	337,1	-99,8
1995	936,7	18,1	2,7	266,4	98,8	80,4	473,2	-3,0
1996	556,8	24,2	0,0	212,7	116,7	50,8	156,8	-4,5
1997	728,0	18,5	0,0	242,8	135,6	102,6	245,1	-16,5
1998	826,0	26,7	0,0	245,1	126,7	94,8	352,4	-19,6
1999	817,2	27,5	0,0	238,3	141,3	106,6	262,4	41,2
2000	1110,2	33,5	0,0	262,0	174,6	164,8	468,7	6,6
2001	952,0	40,9	0,0	218,3	163,5	127,6	403,0	-1,3
2002	996,2	32,9	0,0	217,1	186,4	91,0	492,0	-23,2
2003	771,9	34,6	0,7	227,6	142,1	35,8	248,3	82,7
2004	874,5	41,8	0,9	225,0	245,2	67,1	362,2	-67,7
2005	859,6	44,0	0,0	211,8	173,9	94,2	331,7	4,2
2006	785,7	44,0	0,1	208,9	221,4	48,0	262,4	0,9
2007	1049,5	54,0	0,0	219,9	252,0	84,0	446,5	-6,8
2008	810,3	55,7	0,0	198,1	197,1	74,5	326,2	-41,4
2009	912,8	84,7	0,0	188,7	247,7	37,3	309,0	45,5
Summe	14660,2	603,5	6,5	3948,4	2782,3	1437,5	5864,6	17,3
Mittelwert	862,4	35,5	0,4	232,3	163,7	84,6	345,0	1,0

¹⁾ windkorrigiert

Abbildung 110: Kirchberg, Sukzessionsvariante (Parzelle 5203), Bilanzkomponenten des Wasser haushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung.

Kirchberg, succession (parcel 5203), components of the water balance; top: values in mm/a; bottom: relative amounts (percent of bulk precipitation); DeltaS: change of storage.

Tabelle 132: Kirchberg Sukzessionsvariante (Parzelle 5204), Bilanzkomponenten des Wasserhaushalts.

Kirchberg succession (parcel 5204), components of the water balance.

Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (165 cm) (mm)	lateraler Abfluss (0-165 cm) (mm)	Speicher- änderung (0-165 cm) (mm)
1993	940,5	12,9	0,6	258,9	88,4	69,8	365,4	144,6
1994	732,1	13,8	1,4	290,3	91,5	99,2	334,4	-98,6
1995	936,7	19,8	2,5	265,4	99,6	82,6	473,2	-6,4
1996	556,8	28,6	0,0	201,9	132,1	64,2	131,9	-1,7
1997	728,0	25,1	0,0	220,3	175,5	98,8	229,9	-21,7
1998	826,0	39,3	0,0	212,2	152,1	97,5	347,3	-22,2
1999	817,2	42,3		203,6	165,9	98,6	270,1	36,6
2000	1110,2	51,5		207,2	209,2	129,4	496,2	16,7
2001	952,0	64,6		172,2	183,7	118,9	419,4	-6,8
2002	996,2	51,9		173,6	212,9	77,8	498,2	-18,0
2003	771,9	52,5	0,1	180,9	168,2	38,1	244,6	87,6
2004	874,5	63,3		170,7	266,5	86,2	358,7	-70,8
2005	859,6	64,9		162,4	198,6	90,4	339,9	3,4
2006	785,7	62,9		165,0	243,9	58,5	259,0	-3,5
2007	1049,5	73,9		179,7	275,9	85,9	441,3	-7,2
2008	810,3	75,2		169,3	211,4	87,8	305,3	-38,6
2009	912,8	106,3		155,7	262,6	45,4	303,8	39,2
Summe	14660,2	848,8	4,5	3389,1	3137,9	1429,1	5818,5	32,3
Mittelwert	862,4	49,9	0,3	199,4	184,6	84,1	342,3	1,9

¹⁾ windkorrigiert

Abbildung 111: Kirchberg Sukzessionsvariante (Parzelle 5204), Bilanzkomponenten des Wasser haushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung.

Kirchberg succession (parcel 5204), components of the water balance; top: values in mm/a; bottom: relative amounts (percent of bulk precipitation); DeltaS: change of storage.

Kirchberg succession (parcel 5203), simulated and measured water storage.

Abbildung 113: Kirchberg Sukzessionsvariante (Parzelle 5204), simulierter und gemessener Bodenwasservorrat.

Kirchberg succession (parcel 5204), simulated and measured water storage.

Besonderheiten Sukzessionsvarianten

Zur Plausibilität der Tensiometermessungen vgl. Abschnitt Besonderheiten Null-/Freiflächen. Ansonsten keine weiteren Besonderheiten.

Stieleiche (Parzellen 5303, 5304)

Datengrundlage, Vegetation und Boden, Modellparameter

Tabelle 133:Kirchberg Stieleiche (Parzellen 5303, 5304), Datengrundlage Bodenhydrologie.Kirchberg pedunculate oak (parcels 5303, 5304), soil hydrologic data.

Bodensaugspannung	1993 - 1995: Einstichtensiometer in 15 - 50 cm Tiefe
Bodenwassergehalt	1996 - 2007: TDR in 15 - 50 cm Tiefe
Datengrundlage Modellparameter Boden	Labor-pF-Kurven des Profils "BE 1"

Tabelle 134: Kirchberg Stieleiche (Parzellen 5303, 5304), Modellparameter Boden.

Kirchberg pedunculate oak (parcels 5303, 5304), model parameters soil.

Horizont	Tiefe	λ	Psie	Porosität	FK	PWP ¹⁾	nFK	K _{matrix}	K _{makro}
	(cm)	(-)	(hPa)	(%)	(Vol.%)	(Vol.%)	(Vol.%)	(m/d)	(m/d)
Ah Sw, Sd	0 - 30	0,05	2,19	43,1	n.b.	24,68	n.b.	0,30	0,30
Sd	30 - 100	0,06	3,92	40,1	n.b.	22,34	n.b.	0,09	0,09

¹⁾ Im Rahmen der Modellaufstellung nicht skelettkorrigiert (Begründung: TDR-Messungen der anderen Parzellen bestätigen die Richtigkeit der Labor-pF-Kurven und zeigen, dass der Skelettgehalt in den Bodenprofilen überschätzt wurde).

Modellparameter Stauwasserabfluss siehe Tabelle 114

Tabelle 135:Kirchberg Stieleiche (Parzellen 5303, 5304), Modellparameter Vegetation.Kirchberg pedunculate oak (parcels 5303, 5304), model parameters vegetation.

Blattflächenindex (m²/m²)*	siehe Abbildung 93			
Bestandeshöhe (m)	siehe Abbildung 94			
Interzeptionskapazität (mm/LAI)	0,2 (Wasser), 4 (Schnee)			
r _s (Vegetationsperiode) (s/m)	65			
kritischer Wassergehalt bei Luftmangel (Vol.%)	5			
kritische Saugspannung bei Austrocknung (hPa)	300			
maximale Wurzeltiefe (cm ab Oberkante Auflage)	70			
Wurzelverteilung	exp.			
kompensatorische Wasseraufnahme bei Wasserstress	ja			
Intensität kompensatorische Wasseraufnahme (-)	0,6			

* Parameter mit saisonaler und/oder jährlicher Variation

Ergebnisse

Kirchberg pedunculate oak (parcels 5303, 5304), measured and simulated soil water suction.

Kirchberg pedunculate oak (parcels 5303, 5304), measured and simulated soil water content.

Tabelle 136 Kirchberg Stieleiche (Parzellen 5303, 5304), Bilanzkomponenten des Wasserhaushalts.

Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (165 cm) (mm)	lateraler Abfluss (0-165 cm) (mm)	Speicher- änderung (0-165 cm) (mm)
1993	940,5	14,0	0,6	261,5	99,7	59,9	372,3	132,6
1994	732,1	14,2	1,4	291,3	94,9	97,2	333,1	-99,9
1995	936,7	20,7	2,5	264,3	101,4	79,0	470,6	-1,9
1996	556,8	29,2	0,0	202,0	134,1	54,3	140,8	-3,6
1997	728,0	26,1	0,0	221,1	178,5	91,7	237,0	-26,5
1998	826,0	40,7	0,0	211,7	155,0	81,3	350,0	-12,6
1999	817,2	46,4	0,0	202,9	163,6	102,7	258,7	43,0
2000	1110,2	53,1	0,0	205,7	252,6	127,6	465,7	5,4
2001	952,0	69,3	0,0	171,0	185,1	117,4	416,4	-7,3
2002	996,2	54,1	0,0	169,8	213,7	73,6	503,0	-18,0
2003	771,9	57,3	0,0	176,7	169,3	31,1	258,6	78,8
2004	874,5	68,5	0,0	162,4	280,3	59,8	364,4	-60,9
2005	859,6	71,2	0,0	154,0	205,0	92,8	332,8	3,8
2006	785,7	68,6	0,0	149,7	252,7	54,1	261,3	-0,7
2007	1049,5	80,7	0,0	165,0	283,7	81,6	448,7	-10,3
2008	810,3	84,0	0,0	149,2	224,8	77,7	312,8	-38,1
2009	912,8	115,5	0,0	135,8	274,1	38,3	302,8	46,4
Summe	14660,2	913,7	4,6	3294,2	3268,3	1320,0	5828,9	30,3
Mittelwert	862,4	53,7	0,3	193,8	192,3	77,6	342,9	1,8

Kirchberg pedunculate oak (parcels 5303, 5304), components of the water balance.

¹⁾ windkorrigiert

Kirchberg

Abbildung 116: Kirchberg, Stieleiche (Parzellen 5303, 5304), Bilanzkomponenten des Wasser haushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung.

Kirchberg, pedunculate oak (parcels 5303, 5304), components of the water balance; top: values in mm/a; bottom: relative amounts (percent of bulk precipitation); DeltaS: change of storage.

Kirchberg pedunculate oak (parcels 5303, 5304), simulated and measured water storage.

Besonderheiten Stieleiche

Keine Besonderheiten.

Kirchberg

Roterle (Parzellen 5403, 5404)

Datengrundlage, Vegetation und Boden, Modellparameter

Tabelle 137:Kirchberg Roterle (Parzellen 5403, 5404), Datengrundlage Bodenhydrologie.Kirchberg Red alder (parcels 5403, 5404), soil hydrologic data.

Bodensaugspannung	1993 - 1995: Einstichtensiometer in 15 - 50 cm Tiefe
Bodenwassergehalt	1996 - 2007: TDR in 15 - 50 cm Tiefe
Datengrundlage Modellparameter Boden	Labor-pF-Kurven des Profils "BE 1"

Tabelle 138:Kirchberg Roterle (Parzellen 5403, 5404), Modellparameter Boden.Kirchberg Red alder (parcels 5403, 5404), model parameters soil.

Horizont	Tiefe	λ	Psie	Porosität	FK	PWP ¹⁾	nFK	K _{matrix}	K _{makro}
	(cm)	(-)	(hPa)	(%)	(Vol.%)	(Vol.%)	(Vol.%)	(m/d)	(m/d)
Ah Sw, Sd	0 - 30	0,05	2,19	43,1	n.b.	24,68	n.b.	0,30	0,30
Sd	30 - 100	0,06	3,92	40,1	n.b.	22,34	n.b.	0,09	0,09

¹⁾ Im Rahmen der Modellaufstellung nicht skelettkorrigiert (Begründung: TDR-Messungen der anderen Parzellen bestätigen die Richtigkeit der Labor-pF-Kurven und zeigen, dass der Skelettgehalt in den Bodenprofilen überschätzt wurde).

Modellparameter Stauwasserabfluss siehe Tabelle 114

Tabelle 139:Kirchberg Roterle (Parzellen 5403, 5404), Modellparameter Vegetation.Kirchberg Red alder (parcels 5403, 5404), model parameters vegetation.

Blattflächenindex (m²/m²)*	siehe Abbildung 93
Bestandeshöhe (m)	siehe Abbildung 94
Interzeptionskapazität (mm/LAI)	0,2 (Wasser), 4 (Schnee)
r _s (Vegetationsperiode) (s/m)	65
kritischer Wassergehalt bei Luftmangel (Vol.%)	5
kritische Saugspannung bei Austrocknung (hPa)	300
maximale Wurzeltiefe (cm ab Oberkante Auflage)	70
Wurzelverteilung	exp.
kompensatorische Wasseraufnahme bei Wasserstress	ja
Intensität kompensatorische Wasseraufnahme (-)	0,6

* Parameter mit saisonaler und/oder jährlicher Variation

Ergebnisse

Kirchberg Red alder (parcels 5403, 5404), measured and simulated soil water suction.

Kirchberg

Kirchberg Red alder (parcels 5403, 5404), measured and simulated soil water content.

Tabelle 140: Kirchberg Roterle (Parzellen 5403, 5404), Bilanzkomponenten des Wasserhaushalts.

Kirchberg Red alder (parcels 5403, 5404), components of the water balance.

Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (165 cm) (mm)	lateraler Abfluss (0-165 cm) (mm)	Speicher- änderung (0-165 cm) (mm)
1993	940,5	13,9	0,6	259,1	100,0	63,4	373,1	130,4
1994	732,1	14,3	1,4	291,1	96,4	95,2	332,5	-98,8
1995	936,7	21,7	2,5	265,5	103,5	76,9	469,3	-2,6
1996	556,8	30,9	0,0	201,5	137,0	53,0	136,9	-2,5
1997	728,0	27,2	0,0	220,9	182,5	89,3	233,8	-25,7
1998	826,0	40,4	0,0	211,9	155,3	81,6	350,0	-13,2
1999	817,2	45,4	0,0	203,4	163,4	102,4	259,5	43,1
2000	1110,2	52,7	0,0	206,9	236,7	139,2	469,3	5,3
2001	952,0	66,7	0,0	172,2	183,4	119,2	416,6	-6,1
2002	996,2	53,3	0,0	171,3	210,4	78,2	501,3	-18,2
2003	771,9	54,2	0,1	176,7	167,7	33,0	261,7	78,5
2004	874,5	65,8	0,0	163,7	267,4	66,6	370,7	-59,6
2005	859,6	65,8	0,0	155,1	202,1	91,0	342,1	3,5
2006	785,7	65,0	0,0	152,3	249,1	53,4	268,4	-2,5
2007	1049,5	77,2	0,0	169,2	279,7	82,0	449,5	-8,2
2008	810,3	78,8	0,0	154,8	220,6	68,2	327,5	-39,7
2009	912,8	111,6	0,0	140,8	266,4	40,3	306,4	47,3
Summe	14660,2	884,8	4,5	3316,5	3221,8	1333,1	5868,5	31,0
Mittelwert	862,4	52,0	0,3	195,1	189,5	78,4	345,2	1,8

¹⁾ windkorrigiert

Kirchberg

Abbildung 120: Kirchberg, Roterle (Parzellen 5403, 5404), Bilanzkomponenten des Wasserhaushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung.

Kirchberg, Red alder (parcels 5403, 5404), components of the water balance; top: values in mm/a; bottom: relative amounts (percent of bulk precipitation); DeltaS: change of storage.

Kirchberg

Kirchberg Red alder (parcels 5403, 5404), simulated and measured water storage.

Besonderheiten Roterle

Keine Besonderheiten

3.4 Wasserhaushalt der Untersuchungsflächen des Kahllagenversuchs

3.4.1 Konzept des Kahllagenversuchs

Der Wasser- und Stoffhaushalt von Waldökosystemen wird durch "Störungen" etwa durch waldbauliche Maßnahmen wie Durchforstungen oder Endnutzungen, aber auch durch natürliche Ereignisse wie Sturmwurf, Schneebruch oder Insektenkalamitäten erheblich beeinflusst. Kenntnisse über diese Einwirkungen sind notwendig, um bleibenden Schäden am Standort z.B. durch Veränderungen der Wasserleitfähigkeit und Wasserspeicherfähigkeit durch Verlust von gröberen Poren bei längeren Nassphasen oder durch übermäßige Auswaschung von Nährelementen begegnen zu können.

An Versuchsanlagen in den Forstämtern Simmern, Forstrevier Rheinböllen, Gemeindewald Kisselbach und Kastellaun, Forstrevier Laubach, Gemeindewald Laubach werden die Auswirkungen einer großflächigen Kahllegung und einer allmählichen Auflösung von Fichtenbeständen auf Standorten mit und ohne Stauwassereinfluss auf den Wasser- und Stoffhaushalt untersucht. Insbesondere soll folgenden Fragen nachgegangen werden:

- Wie verändert sich die Dauer der Nass- bzw. Trockenphasen im Boden?
- Werden bodenphysikalische Eigenschaften erkennbar verändert?
- In welchem Umfang treten Versauerungsschübe auf?
- In welchem Umfang gehen N\u00e4hrelemente verloren?
- Wie lange dauert es, bis die neue Vegetation, die aus einer Kahlschlagsflora und den neu gepflanzten oder natürlich verjüngten Forspflanzen besteht, die alte Bestockung in ihrer Wirkung auf den Bodenwasserhaushalt und den Nährelementkreislauf ersetzt?
- Welche Wurzeltiefe erreichen die neue Fich tengeneration auf der Braunerde und die neu gepflanzten Stieleichen auf dem Pseudogley im Vergleich zum Fichtenvorbestand?

Diesen Praxisversuchen ging ein Projekt voraus, das in Zusammenarbeit mit der Universität Göttingen von 1986 bis 1991 die Zusammenhänge von Immissions- und Sturmschäden untersuchte (SIMS; AUTORENKOLLEKTIV 1991). Bereits aus dem SIMS-Projekt standen für die drei Untersuchungsflächen Depositionsmessungen im Freiland und unter dem Bestand, Sickerwasseruntersuchungen mit Saugkerzen in drei Bodentiefen sowie Tensiomessungen in 6 Bodentiefen zur Verfügung (vgl. Schmidt 1991, Rastin 1991), die auch nach Abschluss des SIMS-Projektes weitergeführt wurden. Auch die aus dem SIMS - Projekt vorhandenen Daten konnten für die neue Fragestellung weiter genutzt werden. Es existiert also eine Vorlaufphase unter Bestandesbedingungen, die den Befunden nach der Kahllegung gegenübergestellt werden kann.

Die Fichtenbestände an den Standorten Kisselbach III und Kisselbach IX, wurden nach einer teilweisen Beschädigung durch die Orkane des Jahres 1990 und nachfolgendem Borkenkäferbefall im März 1993 großflächig geräumt. Die Kahllegung erfolgte so rasch und bodenschonend, dass der Messausfall zeitlich sehr gering war und die vorhandenen, nur teilweise abgebauten Versuchsanlagen, unbeschädigt blieben.

Der Ausgangszustand der Bodenvegetation wurde unmittelbar nach der Räumung und noch vor Beginn der Vegetationszeit sowie jeweils in den Sommern der Folgejahre aufgenommen. Die beiden Versuchsflächen wurden umzäunt und nach einem mit dem Waldbaureferat des Ministeriums abgestimmten Konzept im Herbst 1993 wieder bestockt (s. u.). Die Entwicklung der Folgebestände und des chemischen Bodenzustandes wurde durch periodische Aufnahmen erfasst. Messungen des Bestandesniederschlags und der Stoffdeposition mit Bulksamplern erfolgten bis 1992 in den Fichtenaltbeständen und von 2003 bis 2005 in den Folgebeständen. Freilandmessungen der Niederschläge wurden von 1988 bis 2005 an einer zwischen den Untersuchungsarealen Kisselbach III und IX gelegenen Fläche durchgeführt. Eine differenziertere Beschreibung der Versuchsanlage, Untersuchungsmethodik und erste Ergebnisse finden sich in BLOCK et al. (2006a).

Am Standort Laubach VIII werden demgegenüber die Auswirkungen einer allmählichen Auflösung des Fichtenbestandes durch vereinzelten Sturmwurf und Borkenkäferbefall mit parallel ablaufender Naturverjüngung untersucht. Messungen des Bestandesniederschlags und der Stoffdeposition mit Bulksamplern erfolgten bis 2002 im Fichtenaltbestand, Messungen des Freilandniederschlags bis 2005 auf einer benachbarten Freifläche. Die Sickerwasseruntersuchungen werden auf den Versuchsanlagen Laubach und Kisselbach fortgeführt, aber seit 2006 nur noch mit zwei Beprobungsterminen je Jahr. Eine eingehendere Beschreibung der Untersuchungsmethodik und erste Ergebnisse enthält Block et al. (2006b).

3.4.2 Kisselbach, Laubach

Datengrundlage und Modellparameter (alle Versuchsvarianten)

Für die Wasserhaushaltsuntersuchungen der Kahllagen-Standorte wurden die Klimadaten der ca. 16 km nordöstlich der Fläche Laubach und ca. 24 km ost-nordöstlich der Flächen in Kisselbach gelegenen Waldklimastation Kirchberg (Sukzessionsversuch) verwendet (siehe Tabelle 110 und Tabelle 111). Während die plausibilitätsgeprüften und lückenersetzten Messwerte von Lufttemperatur, Luftfeuchte, Windgeschwindig-

Besonderheiten (alle Versuchsvarianten)

Am Standort Kisselbach wurden die Bulksamplermessungen des Freiland- bzw. Bestandesniederschlages Ende 2005 eingestellt. Dadurch konnte der in den Vorjahren durchgeführte Abgleich der Freilandniederschläge mit den Niederschlägen der Station Kirchberg und eine Validierung des Bestandesniederschlags nicht mehr durchgeführt werden. Im Zeitraum 1993 – 2005 ist der Jahresniederschlag am Standort Kisselbach etwa 7,5 % niedriger als am Standort Kirchberg. Ab 2006 wurden daher die um 7,5 % reduzierten Tagesniederschläge der Station Kirchberg für Kisselbach verwendet.

Die Porosität wurde an allen drei Standorten gegenüber den Werten bei Schmidt (1992) verrinkeit und Globalstrahlung direkt übernommen wurden, erfolgte für die täglichen Niederschläge eine Korrektur auf Grundlage der wöchentlichen Bulksamplerwerte (Freifläche) der jeweiligen Fläche des Kahllagenversuchs. Für den Zeitraum 11/1987 – 10/1989 erfolgte die Disaggregierung der Niederschläge mit Hilfe der Angaben von SCHMIDT (1992).

gert, da sich die entsprechenden Werte nicht mit den pF-Messwerten bei pF 0,4 (das entspricht 2,5 hPa) in Einklang bringen ließen. Ursache ist möglicherweise, dass unter Feldbedingungen in der Regel auch bei Sättigung nicht alle Poren wassergefüllt sind (z.B. LISCHEID 1995).

Für die Simulation der drei Kahllagen-Flächen Kisselbach III, Kisselbach IX und Laubach VII wurde die Kraut- und Oberschicht des Bestandes separat berücksichtigt. Die Parametrisierung der Vegetation erfolgte prozessorientiert separat für die Krautschicht und den Oberstand. Dies ermöglicht eine bessere Abbildung der Rodung und des Wiederaufwachsens des Baumbestandes sowie der Entwicklung der Krautschicht unmittelbar nach der Rodung.

3.4.3 Kisselbach III (vor Rodung Fichte, dann Mischbestand aus Fichte, Buche, Birke, Vogelbeere und Kiefer)

Standort und Bestand

Die Untersuchungsfläche Kisselbach III liegt in einer Höhe von ca. 450 m über NN im Wuchsbezirk Östliche Hunsrück-Hochfläche. Der Boden ist eine im Untergrund (>80 cm) pseudovergleyte Braunerde aus Decklehm mit Grauwacke- und Tonschieferschutt über Tonschieferzersatz über devonischem Tonschiefer. Vor der Kahllegung war die Fläche mit einem ca. 90-jährigen Fichtenreinbestand bestockt. Nach der Kahllegung im März 1993 wurde die vorhandene fichtendominierte Naturverjüngung durch ca. 1000 m² große Buchengruppen, die mit aus Naturverjüngung vorhandenen Ebereschen überstellt sind, ergänzt. Aus den Buchengruppen wurden zu einem späteren Zeitpunkt die angesamten Fichten entfernt. Aktuell stockt auf dieser Fläche ein Mischbestand aus Fichte, Buche, Birke, Eberesche, Kiefer und vereinzelt auch Stieleiche.

Datengrundlage Vegetation und Boden, Modellparameter

Tabelle 141: K	Kisselbach III Kahllagenversuch, Datengrundlage Bodenhydrologie. Kisselbach III clear cutting experiment, soil hydrologic data.						
Bodensaugspannung		1992 - 2003: automat. Tens. in 38 - 158 cm Tiefe 2003 - 2005: Einstichtensiometer in 24-87 cm Tiefe					
Bodenwassergeha	alt	-					
Datengrundlage Modellparameter Boden		Labor-pF-Kurve, hydraulische Leitfähigkeit invers optimiert					

Tabelle 142: Kisselbach III Kahllagenversuch, Modellparameter Boden.

Kisselbach III clear cutting experiment, model parameters soil.

Horizont	Tiefe	λ	Psie	Porosität	FK	PWP ¹⁾	nFK	K _{matrix}	K _{makro}
	(cm)	(-)	(hPa)	(%)	(Vol.%)	(Vol.%)	(Vol.%)	(m/d)	(m/d)
Auflage	0 - 8	0,34	1,50	78,0	n.b.	12,5	n.b.	2,1	2,1
"I Ahe"	8 - 18	0,19	13,81	55,8	n.b.	11,5	n.b.	1,5	1,5
Bv1, Bv2, IIBv	18 - 83	0,08	7,26	37,8	n.b.	17,0	n.b.	0,2	0,2
SBv, IIICvS1, CvS2	83 - 118	0,12	2,30	31,8	n.b.	10,4	n.b.	0,2	0,2
IVCv	118 - 200	0,12	2,30	21	n.b.	6,86	n.b.	0,0	0,2

¹⁾ Im Rahmen der Modellaufstellung skelettkorrigiert

n.b. nicht bestimmt

Tabelle 143: Kisselbach III Kahllagenversuch, Modellparameter Stauwasserabfluss.

Kisselbach III clear cutting experiment, model parameters lateral drain.

q1	z1	q2	z2
peakflow (mm)	peaklevel (m)	baseflow (mm)	baselevel (m)
100,0	-9,0	0,0	-10,0

Tabelle 144:Kisselbach III Kahllagenversuch, Modellparameter Vegetation.Kisselbach III clear cutting experiment, model parameters vegetation.

Bestandeshöhe (m), Blattflächenindex (m²/m²)*, Wurzeltiefe (m)	siehe Abbildung 122
Interzeptionskapazität (mm/LAI)	0,45 (Wasser), 4 (Schnee)
CondMax	Krautschicht: 0,02 Oberstand: 0,0075 (1988 - 1993), 0,009 (seit 1994)
kritischer Wassergehalt bei Luftmangel (Vol.%)	0
kritische Saugspannung bei Austrocknung (hPa)	300
maximale Wurzeltiefe (cm ab Oberkante Auflage)	siehe Abbildung 122
Wurzelverteilung	exp.
kompensatorische Wasseraufnahme bei Wasserstress	ja
Intensität kompensatorische Wasseraufnahme (-)	1

* Parameter mit siasonaler und/oder jährlicher Variation

Abbildung 122: Kisselbach III Kahllagenversuch, simulierte Bestandeshöhe, Blattflächenindex und Wurzeltiefe.

Kisselbach III clear cutting experiment, simulated stand hight, Leaf Area Index and root depth.

Kisselbach III

Ergebnisse

Tabelle 145:	Kisselbach III Kahllagenversuch, gemessene und simulierte Interzeption. Kisselbach III clear cutting experiment, measured and simulated interception of the canopy level.							
	FNS korr. (mm) Messwert	BNS (mm) Messwert	Interzeption (mm) Messwert	Interzeption (mm) Simulation	Abweichung (mm) Messwert/Simulation			
1989	595	307	288	332	-44			
1990	801	425	376	357	19			
1991	632	320	312	322	-10			
1992	720	354	366	350	15			
	-	-	-	-	-			
2004	801	702	99	108	-9			
2005	752	568	184	106	78			
2006	727	-	-	110	-			
2007	971	-	-	127	-			
2008	750	-	-	123	-			
2009	844	-	-	147	-			
Summe ¹⁾	4301	2676	1625	1575	49			
Mittelwert ¹⁾	717	446	271	263	8			

¹⁾ 1989 - 1992, 2004 und 2005

Abbildung 123: Kisselbach III Kahllagenversuch, gemessene und simulierte Bodensaugspannung (1). Kisselbach III clear cutting experiment, measured and simulated soil water suction (1).

Kisselbach III

Abbildung 124: Kisselbach III Kahllagenversuch, gemessene und simulierte Bodensaugspannung (2). Kisselbach III clear cutting experiment, measured and simulated soil water suction (2).

Tabelle 146 Kisselbach III Kahllagenversuch, Bilanzkomponenten des Wasserhaushalts.

Kisselbach III clear cutting experiment, components of the water balance.

Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption ^{z)} (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion (real) (mm)	Tiefen- sickerung (220 cm) (mm)	lateraler Abfluss (0-220 cm) (mm)	Speicher- änderung (0-220 cm) (mm)
1988	785	439	0	35	260	77	0	-26
1989	595	334	0	38	281	2	0	-60
1990	801	359	0	40	313	11	0	77
1991	632	324	0	37	265	56	0	-50
1992	720	352	0	42	331	-2	0	-4
1993	788	82	12	157	47	386	0	105
1994	751	31	8	181	52	485	0	-7
1995	842	54	7	162	79	564	0	-24
1996	599	72	62	121	98	261	1	-16
1997	660	86	50	116	151	242	7	7
1998	815	111	20	127	149	414	0	-5
1999	860	111	0	125	178	447	0	0
2000	963	138	2	130	166	538	0	-10
2001	884	141	55	113	164	404	0	7
2002	868	120	45	99	170	441	0	-7
2003	672	101	57	113	207	214	0	-19
2004	801	144	16	112	173	348	0	8
2005	752	134	0	111	181	317	0	9
2006	727	141	131	114	190	181	0	-30
2007	971	156	0	129	179	476	0	31
2008	750	151	0	129	180	329	0	-39
2009	844	178	99	111	174	246	0	35
Summe	17080	3758	565	2342	3988	6436	9	-18
Mittelwert	776	171	26	106	181	293	0	-1

¹⁾ windkorrigiert ²⁾ Summe aus Kraut- und Oberschicht

Kisselbach III

Abbildung 125: Kisselbach III Kahllagenversuch, Bilanzkomponenten des Wasserhaushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung.

Kisselbach III clear cutting experiment, components of the water balance; top: values in mm/a; bottom: relative amounts (percent of bulk precipitation); DeltaS: change of storage.

Besonderheiten

Für die Diskretisierung des Bodens wurden bei Widerspüchen zwischen Profilbeschreibung und pF-Kurven die Daten der pF-Kurven übernommen. Für die organische Auflage (laut Profilbeschreibung 8 – 0 cm) liegen keine bodenphysikalischen Daten vor. Hier wurden die Parameter eines von ZIMMERMANN (1995) untersuchten Auflagehorizontes unter Fichte aus dem Schwarzwald verwendet.

Die Labor-pF-Kurven für die beiden oberen Bodenmaterialien ließen sich ohne Einschränkung an die Modellfunktion nach Brooks-und-Corey anpassen. Um auch bei der Kurve für 75 - 110 cm zufriedenstellende Ergebnisse zu erzielen, wurde der Messpunkt bei pF 3 (15,6 Vol. %) nicht bei der Kurvenanpassung berücksichtigt. Bei diesem Wert handelt es sich möglicherweise um eine Fehlmessung: Nach der Laborkurve würde dieses Substrat zwischen pF 2,5 und pF 3 annähernd 1/3 der Gesamtporen entwässern, zwischen pF 3 und 3,5 dagegen praktisch keine Äquivalentporen aufweisen. Ursache ist vermutlich der übliche Methodenwechsel zwischen pF 0 – 2,5 (keramische Platten) und pF 3 – 4,2 (Drucktopf). Unterhalb von 110 cm Tiefe wurde aufgrund der Angaben zum Skelettgehalt in der Profilbeschreibung die Porosität reduziert.

Für den Zeitraum August 1991 – März 1993 ließ sich eine sehr gute Übereinstimmung zwischen gemessener und simulierter Interzeption erreichen. In den Jahren zuvor wird die Kronentraufe der Fichten dagegen zwischen Frühjahr und Herbst systematisch unterschätzt, was im Winter durch eine zu gering simulierte Interzeption wieder ausgeglichen wird. Der Grund für die Abweichungen ist nicht bekannt. Unzulänglichkeiten des Interzeptionsmodells sind als Ursache weniger wahrscheinlich, da seit August 1991 durchgehend eine sehr gute Übereinstimmung zwischen Messung und Simulation zu verzeichnen ist. Möglichweise wurde die Niederschlagsmessung (Freiland- und Bestandesniederschlag) durch nicht dokumentierte Einflüsse wie z. B. ein Überlaufen von Bulksamplern bei starkem Schneefall, durch Schneebruch oder Windwurf gestört.

Eine detailierte Betrachtung der Bodensaugspannungen um den Nullpunkt in 88 und 158 cm Tiefe zeigt am 23.11.1995 eine Verschiebung der Messreihen um etwa 20 hPa (158 cm Tiefe) bzw. 15 hPa (88 cm Tiefe) nach oben, ohne dass dies auf meteorologische Einflüsse zurückzuführen wäre. Der offset äußert sich insbesondere darin, dass die winterlichen Saugspannungen vor diesem Zeitpunkt in 158 cm Tiefe im Mittel etwa -20 hPa und danach etwa 0 hPa betragen. In 88 cm Tiefe erfolgte diese Verschiebung von etwa 5 hPa auf ca. 20 hPa. Erwartungsgemäß konnte dieser offset auch in den Simulationen des Bodenwasserhaushalts nicht nachvollzogen werden. Um die simulierten mit den gemessenen Bodensaugspannungen grafisch vergleichen zu können, wurden in allen folgenden Abbildungen die Messwerte der Bodensaugspannung bis 22.11.1995 um +20 (158 cm Tiefe) bzw. +15 hPa (88 cm Tiefe) korrigiert.

3.4.4 Kisselbach IX (vor Rodung Fichte, dann Stieleiche mit unterständiger Winterlinde)

Standort und Bestand

Die Untersuchungsfläche Kisselbach IX liegt nur etwa dreihundert Meter westlich der Fläche Kisselbach III.

Der Boden ist ein ausgeprägter Pseudogley aus Decklehm über Tonschieferzersatz über devonischem Tonschiefer. Der Sd-Horizont beginnt bereits 25-35 cm unter der Mineralbodenoberfläche.

Vor der Kahllegung war die Fläche mit einem ca.

90-jährigen Fichtenreinbestand bestockt. Nach der Kahllegung im März 1993 wurde die weitgehend verjüngungsfreie Kahlfläche mit Stieleiche und Winterlinde bepflanzt. Die Winterlinde wurde von der Stieleiche rasch überwachsen und findet sich nur noch in geringem Umfang im Unterstand. Aktuell stockt auf dieser Fläche ein geschlossenes, wüchsiges Stieleichenstangenholz

Datengrundlage Vegetation und Boden, Modellparameter

Tabelle 147:	Kisselbach IX Kahllagenversuch, Datengrundlage Bodenhydrologie. Kisselbach IX clear cutting experiment, soil hydrologic data.						
Bodensaugspannung		1992 - 2003: automat. Tens. in 28 - 158 cm Tiefe 2003 - 2005: Einstichtensiometer in 24-87 cm Tiefe					
Bodenwasserge	halt	-					
Datengrundlag	e Modellparameter Boden	Labor-pF-Kurve, hydraulische Leitfähigkeit invers optimiert					

Kisselbach IX clear cutting experiment, model parameters soil.									
Horizont	Tiefe	λ	Psie	Porosität	FK	PWP ¹⁾	nFK	K _{matrix}	K _{makro}
	(cm)	(-)	(hPa)	(%)	(Vol.%)	(Vol.%)	(Vol.%)	(m/d)	(m/d)
Auflage	0 - 8	0,34	1,50	78,0	n.b.	12,5	n.b.	2,100	2,100
Sw	8 - 33	0,11	7,63	42,3	n.b.	16,5	n.b.	1,500	1,500
IISd / Std	33 - 123	0,04	6,54	35,5	n.b.	24,1	n.b.	0,010	0,010
IIICn	123 - 138	0,08	40,65	38	n.b.	17,4	n.b.	0,010	0,010
IIICn	138 - 220	0,05	21,01	40,9	n.b.	15,1	n.b.	0,010	0,010
IIICn	220 - 300	0,08	51,95	36,9	n.b.	12,4	n.b.	0,005	0,005

Tabelle 148: Kisselbach IX Kahllagenversuch, Modellparameter Boden.

¹⁾ Im Rahmen der Modellaufstellung skelettkorrigiert

n.b. nicht bestimmt

Tabelle 149: Kisselbach IX Kahllagenversuch, Modellparameter Stauwasserabfluss.

Kisselbach IX clear cutting experiment, model parameters lateral drain.

q1	z1	q2	z2
peakflow (mm)	peaklevel (m)	baseflow (mm)	baselevel (m)
7,0	-0,8	2,0	-2,5

Tabelle 150:	Kisselbach IX Kahllagenversuch, Modellparameter Kisselbach IX clear cutting experiment, model paramete	Vegetation. ers vegetation.
Bestandeshöhe	(m), Blattflächenindex (m²/m²)*, Wurzeltiefe (m)	siehe Abbildung 126
Interzeptionskap	azität (mm/LAI)	0,45 (Wasser), 4 (Schnee)
CondMax		Krautschicht: 0,02 Oberstand: 0,0075 (1988 - 1993), 0,009 (seit 1994)
kritischer Wasse	rgehalt bei Luftmangel (Vol.%)	0
kritische Saugsp	annung bei Austrocknung (hPa)	300
maximale Wurze	eltiefe (cm ab Oberkante Auflage)	siehe Abbildung 126
Wurzelverteilun	g	exp.
kompensatorisc	he Wasseraufnahme bei Wasserstress	ja
Intensität komp	ensatorische Wasseraufnahme (-)	0,6

* Parameter mit siasonaler und/oder jährlicher Variation

Kisselbach IX

Abbildung 126: Kisselbach IX Kahllagenversuch, simulierte Bestandeshöhe, Blattflächenindex und Wurzeltiefe.

Kisselbach IX clear cutting experiment, simulated stand hight, Leaf Area Index and root depth.

Ergebnisse

Tabelle 151:	Kisselbach IX Kahllagenversuch, gemessene und simulierte Interzeption des Oberstandes. Kisselbach IX clear cutting experiment, measured and simulated interception of the canopy level.								
	FNS korr. (mm) Messwert	BNS (mm) Messwert	Interzeption (mm) Messwert	Interzeption (mm) Simulation	Abweichung (mm) Messwert/Simulation				
1989	595	311	284	332	-48				
1990	801	427	374	357	17				
1991	632	318	314	322	-8				
1992	720	357	363	350	13				
	-								
2003	414	349	66	65	1				
2004	801	680	121	135	-14				
2005	752	532	219	123	96				
2006	727	-	-	131	-				
2007	971	-	-	145	-				
2008	750	-	-	137	-				
2009	844	-	-	166	-				
Summe ¹⁾	4715	2974	1741	1684	57				
Mittelwert ¹⁾	674	425	249	241	8				

¹⁾ 1989-1992 und 2003-2005

Kisselbach IX

 Abbildung 127:
 Kisselbach IX Kahllagenversuch, gemessene und simulierte Bodensaugspannung.

 Kisselbach IX clear cutting experiment, measured and simulated soil water suction.

Tabelle 152 Kisselbach IX Kahllagenversuch, Bilanzkomponenten des Wasserhaushalts.

Kisselbach IX clear cutting experiment, components of the water balance.

Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption ²⁾ (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion ²⁾ (real) (mm)	Tiefen- sickerung (220 cm) (mm)	lateraler Abfluss ³⁾ (0-220 cm) (mm)	Speicher- änderung (0-220 cm) (mm)
1988	785	439	0	35	233	101	3	-26
1989	595	334	0	39	258	16	0	-52
1990	801	359	0	41	283	28	24	65
1991	632	324	0	37	232	42	49	-52
1992	720	352	0	42	313	11	1	0
1993	788	82	128	166	47	103	119	143
1994	751	31	47	187	52	211	269	-45
1995	842	54	53	168	79	188	294	7
1996	599	72	41	125	99	94	185	-17
1997	660	85	10	122	148	94	190	12
1998	815	110	27	131	146	94	312	-6
1999	860	117	0	119	199	94	311	20
2000	963	152	1	115	195	94	437	-31
2001	884	153	72	99	181	94	297	-13
2002	868	133	85	85	200	94	258	14
2003	672	116	51	89	237	84	140	-45
2004	801	165	14	86	208	105	202	21
2005	752	150	8	88	218	61	236	-10
2006	727	162	86	86	225	127	61	-20
2007	971	175	73	110	221	94	274	25
2008	750	168	111	109	197	48	183	-66
2009	844	198	58	88	217	140	74	69
Summe	17080	3931	862	2166	4186	2020	3920	-6
Mittelwert	776	179	39	98	190	92	178	0

¹⁾ windkorrigiert ²⁾ Summe aus Kraut- und Oberschicht

³⁾ Differenz aus simuliertem lateralen Abfluss und lateralem Input

Kisselbach IX

Abbildung 128: Kisselbach IX Kahllagenversuch, Bilanzkomponenten des Wasserhaushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung.

Kisselbach IX clear cutting experiment, components of the water balance; top: values in mm/a; bottom: relative amounts (percent of bulk precipitation); DeltaS: change of storage.

Besonderheiten

Wie auch an der Versuchsfläche Kisselbach III wurde die Interzeption in Kisselbach IX gerade in den Anfangsjahren des Simulationszeitraums im Sommer unter- und im Winter überschätzt.

Um Pseudo-2D-Bedingungen zu simulieren, wurde der laterale Abfluss des vorhergehenden Modelllaufes zusätzlich als lateraler Input definiert. Die simulierte Tiefensickerung wird mit zunehmender Bodentiefe nicht nur aufgrund von Wurzelwasserentzug ab sondern wird zunehmend auch in lateralen Abfluss umgelenkt. Nur ein kleinerer Teil des gesamten lateralen Abflusses wird am Untersuchungspunkt selbst generiert, die überwiegende Menge stammt aus dem lateralen Input.

3.4.5 Laubach VIII (sich auflösender und verjüngender Fichtenaltbestand)

Standort und Bestand

Die Untersuchungsfläche Laubach VIII liegt in einer Höhe von ca. 470 m über NN im Wuchsbezirk Östliche Hunsrück-Hochfläche.

Der Boden ist eine Pseudogley-Braunerde aus Decklehm über Tonschieferzersatz über devonischem Tonschiefer.

Der zu Beginn der Untersuchungen Anfang der 1990er Jahre ca. 90-jährige Fichtenbestand wurde durch die Stürme Vivian und Wiebke im Winter 1990 angerissen. In den darauffolgenden Jahren führten weitere Ausfälle durch Borkenkäfer zu einer allmählichen Auflösung des Altbestandes. Parallel hierzu etablierte sich eine dichte Fichtennaturverjüngung mit einigen Birken, wenigen Ebereschen und einzelnen Buchen. Im November 2003 wurde dann der Bereich der Messanlage kahlgelegt. Inzwischen hat sich im gesamten Untersuchungsareal Fichtennaturverjüngung etabliert. Die Messsysteme befanden sich bis zur Kahllegung überwiegend in den eher noch geschlossenen Bestandesteilen.

Datengrundlage Vegetation und Boden, Modellparameter

Tabelle 153: Laubach VIII, Datengrundlage Bodenhydrologie. Laubach VIII, soil hydrologic data.

Bodensaugspannung	1992 - 2003: automat. Tens. in 18 - 208 cm Tiefe 2003 - 2005: Einstichtensiometer in 24 - 87 cm Tiefe
Bodenwassergehalt	-
Datengrundlage Modellparameter Boden	Labor-pF-Kurve, hydraulische Leitfähigkeit invers optimiert

Tabelle 154: Laubach VIII, Modellparameter Boden.

Laubach VIII, model parameters soil.

Horizont	Tiefe	λ	Psie	Porosität	FK	PWP ¹⁾	nFK	K _{matrix}	K _{makro}
	(cm)	(-)	(hPa)	(%)	(Vol.%)	(Vol.%)	(Vol.%)	(m/d)	(m/d)
Auflage	0 - 8	0,34	1,50	78,0	n.b.	12,5	n.b.	2,10	2,10
k.A.	8 - 21	0,08	4,82	47,5	n.b.	14,6	n.b.	1,50	1,50
k.A.	21 - 100	0,06	9,95	44,7	n.b.	17,4	n.b.	0,01	0,01

¹⁾ Im Rahmen der Modellaufstellung skelettkorrigiert n.b. nicht bestimmt

Tabelle 155: Laubach VIII, Modellparameter Stauwasserabfluss.

Laubach VIII, model parameters lateral drain.

q1	z1	q2	z2
peakflow (mm)	peaklevel (m)	baseflow (mm)	baselevel (m)
5,0	-0,8	0,0	-2,5

ng 129
(Schnee)
t: 0,2),006
ng 129

* Parameter mit saisonaler und/oder jährlicher Variation

Laubach VIII, simulated canopy hight, Leaf Area Index and root depth.

Ergebnisse

Tabelle 157:	Laubach VIII, gemessene und simulierte Interzeption des Oberstandes. Laubach VIII, measured and simulated interception of the canopy level.							
	FNS korr. (mm) Messwert	BNS (mm) Messwert	Interzeption (mm) Messwert	Interzeption (mm) Simulation	Abweichung (mm) Messwert/Simulation			
1989	689	333	355	392	-37			
1990	868	413	455	417	38			
1991	690	328	362	377	-15			
1992	811	390	421	427	-6			
1993	945	529	417	410	7			
1994	834	389	444	456	-12			
1995	891	451	440	480	-39			
1996	672	336	335	300	35			
1997	730	360	370	328	42			
1998	823	419	404	418	-14			
1999	812	440	372	392	-20			
2000	1050	572	479	473	6			
2001	895	483	412	445	-33			
2002	946	534	412	398	14			
2003	638	-	-	247	-			
2004	785	-	-	185	-			
2005	778	-	-	159	-			
Summe ¹⁾	11655	5977	5679	5713	-35			
Mittelwert ¹⁾	833	427	406	408	-2			

¹⁾ 1989-2002

Abbildung 130: Laubach VIII, gemessene und simulierte Bodensaugspannung (1).

Tabelle 158 Laubach VIII, Bilanzkomponenten des Wasserhaushalts.

Laubach VIII, components of the water balance.

Zeitraum	Freiland- nieder- schlag ¹⁾ (mm)	Inter- zeption ²⁾ (mm)	Ober- flächen- abfluss (mm)	Evapora- tion (real) (mm)	Transpira- tion ²⁾ (real) (mm)	Tiefen- sickerung (220 cm) (mm)	lateraler Abfluss³) (0-220 cm) (mm)	Speicher- änderung (0-220 cm) (mm)
1988	958	523	0	27	291	124	10	-18
1989	689	394	0	30	327	8	7	-78
1990	868	419	0	33	346	6	14	50
1991	690	379	0	30	311	11	25	-66
1992	811	429	0	34	329	-3	0	21
1993	945	411	52	28	383	7	19	145
1994	834	458	48	31	335	42	53	-133
1995	891	482	1	29	308	22	21	28
1996	672	302	24	26	270	-4	2	52
1997	730	330	0	24	330	14	11	21
1998	823	420	1	26	300	22	55	-2
1999	812	394	0	31	336	65	20	-33
2000	1050	475	0	30	302	135	42	66
2001	895	447	0	29	313	137	6	-37
2002	946	400	0	30	331	135	-6	56
2003	638	248	5	38	318	89	6	-67
2004	785	198	0	65	239	196	13	74
2005	778	176	5	59	262	273	3	1
Summe	14814	6884	137	601	5533	1280	300	80
Mittelwert	823	382	8	33	307	71	17	4

¹⁾ windkorrigiert ²⁾ Summe aus Kraut- und Oberschicht ³⁾ Differenz aus simuliertem lateralen Abfluss und lateralem Input

Abbildung 132: Laubach VIII, Bilanzkomponenten des Wasserhaushalts; oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung.

Laubach VIII, components of the water balance; top: values in mm/a; bottom: relative amounts (percent of bulk precipitation); DeltaS: change of storage.

Besonderheiten

Für den Standort Laubach VIII liegt keine Profilbeschreibung vor, sodass sich die Modell-Diskretisierung lediglich an den Tensiometern und der pf-Kurve orientiert.

Die gemessenen Freiflächenniederschläge (Bulksampler Freifläche Laubach) wurden zum Ausgleich eines Mess- bzw. Umrechungsfehlers im Zeitraum 1.1.1988 – 30.9.1996 um +10 % erhöht. Dies ermöglichte über den Gesamtzeitraum eine ideale Wiedergabe der gemessenen Bestandesniederschläge durch die Simulation.

In den Tiefen 18 und 24 cm konnte eine gute Übereinstimmung zwischen gemessenen und simulierten Tensionen erzielt werden. In 51/53 und 87 cm Tiefe ist die Übereinstimmung zwischen Messung und Simulation sogar annähernd optimal. In den Tiefen 158 und insbesondere 208 cm verblieben demgegenüber deutlich zu erkennende Abweichungen zwischen Messung und Simulation: Der durch die Sensoren aufgezeichnete dynamische Wechsel zwischen Perioden mit erheblichem Überstau und starker Austrocknung in größeren Bodentiefen wird durch das Modell nicht adäquat abgebildet. Für die verbleibenden Differenzen zwischen Bodensaugspannungsmessungen und Simulationsergebnissen kommen insbesondere zwei Ursachen in Betracht:

- Die unterste durch SCHMIDT (1992) überlieferte Kurve stammt aus 75 cm Bodentiefe.
 Für die Tiefen 158 und 208 cm, in welcher die Differenzen auftreten, liegen somit keine bodenphysikalischen Daten vor.
- Es handelt sich um Labor- und nicht um Feld-pF-Kurven. Die Verwendung von LaborpF-Kurven führt häufig zu inkonsistenten Parametersätzen (z.B. LISCHEID 1995)

Ursache des regelmäßigen Feuchtewechsels in 158 und 208 cm Tiefe ist möglichweise ein zeitlich stark fluktuierender lateraler Stauwasserzustrom. Durch die Verwendung eines einzugsgebietsbezogenen 3-D-Modellansatzes wäre es evtl. möglich, die hier ablaufenden Prozesse besser zu beschreiben. In Coupmodel ist demgegenüber nur ein relativ einfacher Pseudo-2-D-Ansatz implementiert, bei dem der laterale Abfluss eines Modelllaufes dem jeweils folgenden als lateraler Input aufgegeben wird.

Die Fällung des Oberbestandes im November 2003 wirkt sich weit weniger intensiv auf den Wasserhaushalt aus, als dies in Kisselbach 1993 der Fall war. Ursache ist ein sehr dichter Fichten-Jungwuchs auf der Messfläche Laubach.

4 Diskussion

4.1 Einflussfaktoren auf den Wasserhaushalt

Die standort- und bestandesspezifische Bedeutung der einzelnen Bilanzkomponenten des Wasserhaushalts (Interzeption, Evaporation, Transpiration, Abfluss) wird durch ein komplexes Zusammenspiel von klimatischen, edaphischen und vegetativen Faktoren geprägt (vgl. auch Abschnitt 2.1). Eine zentrale Einflussgröße ist hierbei das Bestandesalter: In den ersten Jahren nach der Bestandesbegründung ähneln die Wasserhaushaltsbilanzen von Waldflächen denen unter landwirtschaftlicher Nutzung. Bei einem Bestandesalter von ca. 20 Jahren mit hoher Bestandesdichte und maximalem Kronenschluss erreicht die Sickerwasserspende dann üblicherweise ein Minimum (z.B. SCHERZER 2001). Ältere Waldbestände im Baumholzstadium wiederum weisen in der Regel eine geringere Evapotranspiration (Peck und Mayer 1996) und höhere Sickerwasserspenden (Müller 1996) auf. Der "Einflussfaktor Bestandesalter" liefert somit den zentralen Erklärungsbeitrag für die Wasserhaushaltsbilanzen der Aufforstungsflächen des Sukzessionsversuches (Abschnitt 3.3) und des Kahllagenexperiments (Abschnitt 3.4).

Die neun Bestände des Level II – Programms, die drei Standorte des Kompensations- sowie die vier Altbestände des Sukzessionsversuches befinden sich mit einer Altersspanne zwischen 80 und 200 Jahren (Bezugsjahr 2010) im Baumholzstadium. Auch diese Flächen zeigen deutliche Unterschiede im Wasserhaushalt (vgl. Tabelle 159 und Abbildung 133): So ist die Summe aus Transpiration und Evaporation in Neuhäusel-Bims mit 442 mm/a (43 % des FNS, Buche) am höchsten und auf der Kompensationsfläche Adenau mit 229 mm/a (25 % des FNS, Fichte) am geringsten. Relativ zum Freilandniederschlag ist die Summe aus Transpiration und Evaporation jedoch in Hermeskeil (Fichte) mit 20 % noch einmal deutlich geringer und in Schaidt (Eiche) mit 54 % deutlich höher. Die Interzeption liegt zwischen 154 mm/a (Gauchsberg, Eiche; 22 % des FNS) und 485 mm/a (Birkenfeld, Fichte; 42 % des FNS), wobei die Eiche in Merzalben relativ zum Freilandniederschlag eine noch geringere Interzeption aufweist

(16 % des FNS). Die Summe aus Oberflächenabfluss, lateralem Abfluss und Tiefensickerung ist in Schaidt mit 197 mm/a (25 % des FNS, Eiche) am geringsten und in Hermeskeil mit 678 mm/a (55 % des FNS, Fichte) am höchsten. Der Einfluss der unterschiedlichen Faktoren bzw. Faktorengruppen auf den Wasserhaushalt ist hier, im Gegensatz zu jungen Beständen in der Jungwuchs- bis Stangenholzphase, jedoch weniger augenscheinlich (Abbildung 134 und Abbildung 135). Bei der Analyse und Interpretation ist außerdem zu berücksichtigen, dass die Einflussfaktoren nicht unabhängig sind (z.B. Korrelation zwischen Klima und Baumart).

Die Höhe des Jahresniederschlags wirkt sich deutlich auf die Abflussmenge sowie auf die Interzeption aus (Abbildung 134 und Abbildung 135). Die Summe aus Evaporation und Transpiration wird hingegen nicht durch die Niederschlagsmenge bestimmt. Der Einfluss der Lufttemperatur auf die einzelnen Komponenten der Evapotranspiration ist schwierig abzuschätzten, da hier eine starke Interaktion mit der temperaturabhängigen Baumartenwahl auftritt: Im Fall der Interzeption ist aufgrund der für die Interzeptionsverdunstung benötigten Energie z.B. davon auszugehen, dass bei gleicher Wasserverfügbarkeit im Interzeptionsspeicher eine positive Korrelation zwischen Interzeption und Lufttemperatur auftritt. Für die untersuchten Standorte ergibt sich jedoch ein negativer Zusammenhang. Dies bedeutet, dass die Wasserverfügbarkeit und nicht die zur Verfügung stehende Energie die entscheidende Einflussgröße darstellt. Die Wasserverfügbarkeit ist wiederum von der Größe des Interzeptionsspeichers (LAI · spezifische Blattspeicherkapazität) und dessen Befüllung (Freilandniederschlag) abhängig. Neben der bereits genannten positiven Rückkopplung mit der Höhe des Freilandniederschlags sind somit auch bestandesspezifische Faktoren von Bedeutung: Der Interzeptionsspeicher der Fichtenbestände (blaue Punkte in Abbildung 135) ist durchschnittlich größer als jener der Eichenbestände (schwarze Punkte in Abbildung 135).
Da die Eichen eher in den wärmeren Regionen angebaut werden und die Fichten in den kühleren Klimaten, ergibt sich hieraus die oben beschriebene negative Korrelation zwischen jährlicher Interzeption und Temperatur. Der Anteil der Interzeption am Freilandniederschlag, welcher für die Fichtenbestände bei durchschnittlich 34 %, für die Kiefernbestände bei 27 %, für die Eichenbestände bei 22 % und für die Buchenbestände bei 21 % liegt, deckt sich mit den Ergebnissen von PECK und MAYER (1996). Auch die Korrelation der Summe aus Transpiration und Evaporation mit der Temperatur ist sicherlich durch die gebietsspezifische Anbaupräferenz mit beeinflusst.

Die Standorte der drei Buchenbestände weisen eine ähnliche Jahresmitteltemperatur auf. Hier wird deutlich, dass die Temperatur und die Baumart nicht die einzigen Faktoren sind, welche die Verdunstung steuern: In Kirchheimbolanden steht der Buche aufgrund einer geringeren Speicherkapazität des sehr skelettreichen Bodens und geringerer Niederschläge speziell in den trockneren Monaten weniger Wasser für die Transpiration zur Verfügung als in Neuhäusel. Auf dem Bims-Standort in Neuhäusel ist die Verdunstung durch die hohe Wasserspeicherfähigkeit des Bodens am höchsten. Die Untersuchung des "Einflussfaktors Boden" erfolgte ohne Berücksichtigung der sieben Altbestände des Kompensations- und Sukzessionsversuchs, da dort die nutzbare Feldkapazität im Wurzelraum bisher nicht bestimmt wurde.

Einen summarischen Eindruck über die Wasserverfügbarkeit an den einzelnen Standorten liefern die forstlichen Wasserhaushaltsstufen. Diese liegen im Bereich äußerst frisch bis mäßig trocken. Die Summe aus Evaporation und Transpiration weist an den fünf Fichtenstandorten, welche die Wasserhaushaltsstufen sehr frisch bis ziemlich frisch aufweisen, eine Spannbreite von 229 bis 293 mm/a auf. Die Wasserverfügbarkeit der Fichten scheint hier nicht eingeschränkt, da das an den feuchteren Standorten zusätzlich verfügbare Wasser als Tiefensickerung abfließt (Abbildung 135). Anders stellt sich die Lage an den Buchenstandorten dar. Hier liegt die Summe aus Evaporation und Transpiration in Kirchheimbolanden (mäßig trocken) deutlich niedriger als am Standort Neuhäusel-Quarzit (sehr frisch) und Neuhäusel-Bims (äußerst frisch). Der Abfluss ist auf dem Bims-Standort am geringsten, da das Niederschlagswasser hier am besten zwischengespeichert werden kann. Der Standort Schaidt ist grundwasserbeeinflusst (Wasserhaushaltsstufe sehr frisch), sodass der Eiche hier ausreichend Wasser zur Verfügung steht. Aufgrund des niedrigen Jahresniederschlags von nur 788 mm/a hat Schaidt den geringsten Abfluss aller Level II Flächen.

Tabelle 159

Bilanzkomponenten des Wasserhaushalts.

Components of the water balance.

Fläche	Freilandnieder- schlag ¹⁾ (mm)	Interzeption (mm)	Oberflächen- abfluss (mm)	Evaporation (real) (mm)	Transpiration (real) (mm)	Tiefensickerung (Tiefe) (mm)	lateraler Abfluss (mm)	Speicher- änderung (mm)
Adenau, Level II ³⁾ Merzalben ³⁾ Hermeskeil ⁴⁾	903,0 1005,2 1240,4	333,7 ²⁾ 163,7 ²⁾ 322,9 ²⁾	0,0 0,0 9,0	36,6 65,8 33,7	256,2 331,5 208,7	275,9 (200 cm) 442,0 (235 cm) 675,6 (220 cm)		0,5 2,2 2,4 2,4
Johanniskreuz ⁴⁾ Kirchheimbolanden ⁴⁾ Neuhäusel-Bims ⁴⁾ Neuhäusel-Quarzit ⁴⁾ Leisel ³⁾ Schaidt ⁴⁾	1021,7 823,0 1022,0 1102,0 1105,2 787,9	254,4 ²⁾ 172,2 ²⁾ 231,1 ²⁾ 211,8 ²⁾ 382,3 ²⁾ 174,3 ²⁾	0,0 0,0,4,4,0,0 0,0,0,0	70,8 42,2 98,2 106,3	275,0 207,8 339,4 282,3 202,6 318,4	419,7 (220 cm) 400,3 (210 cm) 347,6 (265 cm) 428,8 (225 cm) 474,0 (220 cm) 0,3 (160 cm)	- - - 196,5 (0-160 cm)	1,8 0,5 -0,1 -8,2 8,0
Otterberg ⁵⁾ Birkenfeld ⁵⁾ Adenau, Kompensationsversuch ⁵⁾	755,5 1139,1 912,4	220,9 484,7 331,8	0,5 0,5 0,4	61,0 33,5 41,0	239,0 224,8 187,6	231,4 (235 cm) 393,6 (260 cm) 351,3 (235 cm)		2,8 2,0 0,2
Gauchsberg, Fichtenaltbestand ^{6,9)} Gauchsberg, Eichenaltbestand ^{6,9)} Gauchsberg, Freifläche ^{6,9)}	700,4 700,4 700,4 700,4	180,6 154,1 2,0 2,4	0,0,0,0	58,7 60,2 268,9 268,9	232,9 249,1 38,6 43 5	91,3 (165 cm) 92,2 (165 cm) 54,6 (165 cm) 55 0 (165 cm)	129,9 (0-165 cm) 139,3 (0-165 cm) 334,0 (0-165 cm) 3272 (0-165 cm)	7,0 2,5 6,5
Gauchsberg, Sukzessionsvariante ^{6,9)} Gauchsberg, Traubeneiche ^{6,9)}	700,7 700,4 700,4 700,4 700,4	65,5 64,4 40,3 40,0	50000 10000	130,8 130,8 184,0 183,4	244,7 239,1 206,4 203,8	53,0 (165 cm) 55,0 (165 cm) 52,3 (165 cm) 48,9 (165 cm)	200,1 (0-165 cm) 202,1 (0-165 cm) 215,0 (0-165 cm) 221,9 (0-165 cm)	0,0,0,0,0,0 0,0,0,4,4,
Gauchsberg, Birke 69) Virchhord Eichtendlthoctand 69	700,4 700,4 862 4	43,5 43,5 43,5	, L, C, C	184,9 184,4 270	208,3 206,9 252,6	46,7 (165 cm) 51,4 (165 cm) 88 0 (165 cm)	214,5 (0-165 cm) 211,7 (0-165 cm) 166 г (0-165 cm)	2,5 2,5
Kirchberg, Fichtenattbestand 🤲 Kirchberg, Eichenaltbestand 🗐 Kirchberg, Freifläche 🗐 Kirchberg, Sukzessionsvariante 🗐	802,4 862,4 862,4 862,4 862,4	213,1 238,3 5,8 35,5 49,9	0,0000 0,04,4,000	37,0 48,7 232,3 199,4	0,252 216,2 71,8 163,7 184,6	88,9 (165 cm) 84,1 (165 cm) 132,2 (165 cm) 84,6 (165 cm) 84,1 (165 cm)	100,5 (0-105 cm) 274,8 (0-165 cm) 364,2 (0-165 cm) 345,0 (0-165 cm) 342,3 (0-165 cm)	x 0,0 0,0 0,0 7,0 0,0 0,0
Kirchberg, Stieleiche ^{6,9)} Kirchberg, Roterle ^{6,9)}	862,4 862,4	53,7 52,0	С,0 О,3	193,8 195,1	192,3 189,5	77,6 (165 cm) 78,4 (165 cm)	342,9 (0-165 cm) 345,2 (0-165 cm)	1,8 1,8
Kisselbach III ^{3,9)} Kisselbach IX ^{3,9)} Laubach VIII ^{3,9)}	776,0 776,0 823,0	171,0 ⁷⁾ 179,0 ⁷⁾ 382,0 ⁷⁾	26,0 39,0 8,0	106,0 98,0 33,0	181,0 ⁷⁾ 190,0 ⁷⁾ 307,0 ⁷⁾	293,0 (220 cm) 92,0 (220 cm) 71,0 (220 cm)	0,0 (0-220 cm) 178,0 (0-220 cm) ⁸⁾ 17,0 (0-220 cm) ⁸⁾	-1,0 0,0 4,0
¹⁾ windkorrigiert ⁷⁾ Summe au ²⁾ Messwert ⁸⁾ Differenz i ³⁾ Mittelwert 1988-2009 ⁹⁾ Aufwachse	us Kraut- und Obersch aus simuliertem latera ender Bestand	icht Ien Abluss und la	teralem Input					

¹⁾ windkorrigiert ²⁾ Messwert ³⁾ Mittelwert 1988-2009 ⁴⁾ Mittelwert 1992-2009 ⁵⁾ Mittelwert 1996-2009 ⁶⁾ Mittelwert 1993-2009

Abbildung 133

Bilanzkomponenten des Wasserhaushalts (G.: Gauchsberg, K.: Kirchberg); oben: Absolutwerte in mm/a; unten: relative Anteile in Prozent des Freilandniederschlags; DeltaS: Speicheränderung.

Components of the water balance (G.: Gauchsberg, K.: Kirchberg); top: values in mm/a; bottom: relative amounts (percent of bulk precipitation); DeltaS: change of storage

Abbildung 134

Klimatische Einflussfaktoren auf den Wassserhaushalt; FNS: Freilandniederschlag, LT: Lufttemperatur, I: Interzeption, E + T: Summe aus Transpiration und Evaporation, A: Abfluss; Farbcode: blau: Fichte, schwarz: Eiche (mit Buche), grün: Kiefer (mit Buche), rot: Buche.

Climatic fators influencing the water balance; FNS: bulk precipitation, LT: air temperature, I: interception, T: transpiration, A: discharge; colours: blue: spruce, black: oak (with beech), green: pine (with beech), red: beech.

Abbildung 135

Einfluss von Baumart und nFK auf den Wasserhaushalt; I: Interzeption, E: Evaporation, T: Transpiration, A: Abfluss; Farbcode: blau: Fichte, schwarz: Eiche (mit Buche), grün: Kiefer (mit Buche), rot: Buche. Influence of tree species and available field capacity (nFK) on the water balance; FNS: I: interception, E: evaporation,

T: transpiration, A: discharge; colours: blue: spruce, black: oak (with beech), green: pine (with beech), red: beech.

蒿 målålig trocken målålig frochen Gauchsberg, Elche h Kirchberg, Eiche_alt Neuhäusel-Bims Adenau (Komp.) Johanniskreuz Merzalben Offerbeng Lelse Gauchsberg, Fichte_alt Kinchberg, Fichte_alt **Urchhelm-Bolanden** Neuhäusel-Quarzit Adenau (Level II) Bullerst firisch Bulgerst trisch Hermeskell Birkenteld Schaldt œ Ş R 8 읅 8 8 暠 8 8 (e/mm) T + 3 (e/uuul) A 8 Buche Buche 807 Klefer Refer 200 300 nFK (mm) 劉田 8 Fichte 識品 α ò 8 8 8 œ 008 88 œ 8 ₽ 8 Ş 8 8 8 욹 [eyuuu] A (s/mm) T + 3 (e/uuu) A 85 Buche Buche 8 Klefer Kleher 4 吕 IPK [mm] 802 Bithe 副 2 營品 Fichte œ œ <u>8</u> Ξ 808 딇 œ 8 8 8 83 븘 8 8 8 [e/mm] T + ∃ + I [e,uuu] | (s/mm) T + 3

4.2 Trocken- und Sauerstoffstress

Das meteorologische Trockenjahr 2003 zeichnete sich an den Standorten des forstlichen Umweltmonitorings in Rheinland-Pfalz durch Jahresniederschläge im Bereich von lediglich 70 – 80 % des langjährigen Mittels aus. Erwartungsgemäß ist 2003 daher auch die Bodentrockenheit am intensivsten ausgeprägt: An 7 von 9 Level II - Flächen unterschreitet hier die Bodenwasserverfügbarkeit den Wert von 40 % der nFK (Tabelle 160, links). Als weitere Jahre mit potenziellem Trockenstress kommen u.a. 1999 (5 Standorte mit kritischer Wasserverfügbarkeit) und 1991 (4 Standorte) infrage. Umgekehrt lassen sich am Beispiel des Standorts Neuhäusel-Bims, der sich durch eine außergewöhnlich hohe nFK des Wurzelraumes von ca. 460 mm auszeichnet (vgl. Abbildung 36) auch die Grenzen des auf Anders et al. (2002) zurückgehenden Konzeptes erkennen: Durch die relative Betrachtung der Wasserverfügbarkeit wird hier der Trockenstress offenbar stark überschätzt. In Neuhäusel-Bims ist selbst bei einer Wasserverfügbarkeit < 40 % der nFK noch mehr Wasser im Boden vorhanden als an anderen Standorten maximal gespeichert werden kann. Zu einer umfassenderen Beurteilung des Trockenstressrisikos könnte das Konzept der "Transpirationsdifferenz" (HAMMEL und KENNEL 2001, SCHULTZE et al. 2005, FALK et al. 2008), das an Waldstandorten in Rheinland-Pfalz bereits durch SCHULTZE und SCHERZER (2011) angewendet wurde, sowie eine ergänzende Betrachtung der Wasserbindung im Boden (Saugspannung, pF-Werte) beitragen.

Hinsichtlich der Relevanz von potenziellem Sauerstoffmangel der Wurzeln in Feuchtephasen unterscheidet sich der grundwasserbeeinflusste Level II - Standort Schaidt im Bienwald deutlich von den restlichen Plots (Tabelle 160, rechts). Lediglich in Hermeskeil, Kirchheimbolanden und Neuhäusel-Quarzit lassen sich den Simulationsergebnissen zufolge ansatzweise vergleichbare Situationen beobachten. In Kirchheimbolanden wird der Sauerstoffmangel durch das Modell möglicherweise überschätzt. Hier ist die bodenphysikalische Datengrundlage allerdings nicht mit den anderen Flächen vergleichbar: Aufgrund des selbst im Oberboden sehr hohen Skelettgehalts konnten in Kirchheimbolanden keine Labor-pF-Kurven erstellt werden.

Tabelle 160

Level II-Standorte, Jahre mit Trockenstress und qualitative Relevanz von Sauerstoffmangel. Level II-plots: years with dry soil conditions and relevance of oxygene stress.

Level II-Standorte	Trockenstressjahre 1)	Relevanz von Sauerstoffmangel ²⁾
Adenau	1988, 1990, 1991, 1999, 2003	-
Leisel	1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2003	-
Hermeskeil	-	+
Johanniskreuz	1999, 2003,2005	-
Kirchheimbolanden	2003	(+)
Neuhäusel-Bims	1988, 1989, 1990, 1991, 1993, 1995, 1997, 1999, 2003, 2006, 2009	-
Neuhäusel-Quarzit	-	+
Schaidt (BiWa)	2003, 2004, 2006	++
Merzalben	1990, 1991, 1993, 1999, 2001, 2003, 2005	-

¹⁾ "Trockenstressjahr" im Sinn einer mehrwöchigen Unterschreitung einer Bodenwasserverfügbarkeit von 40 % nFK, vgl. z.B. Abbildung 4 ²⁾ "Relevanz von Sauerstoffmangel" durch qualitative Beurteilung des relativen Porenluftgehaltes (AIR30) in Feuchtsituationen

(vgl. z.B. Abbildung 60); ++: hohe Relevanz, +: evtl. relevant, -: keine Relevanz

4.3 Diskussion der eingesetzten Methoden

Zur Untersuchung des Wasserhaushalts auf der Skalenebene einer forstlichen Monitoringfläche ist die Anwendung von numerischen Simulationsmodellen unverzichtbar, da die direkte Messung einzelner Wasserhaushaltskomponenten vor Ort nicht oder nur eingeschränkt möglich ist (vgl. Abschnitt 2.1). Für die Untersuchungsflächen der FAWF wurde daher das Wasserhaushaltsmodell COUPMODEL unter Verwendung von bodenhydrologischen Messwerten standortspezifisch kalibriert und validiert. Bei der Kalibrierung wurden die betrachteten Zielgrößen (z.B. Bodensaugspannung, Bodenwassergehalt) durch Expertenwissen bestmöglich zwischen Simulation und Messung in Übereinstimmung gebracht. Die Kalibrierung impliziert u.a. auch ein Korrektiv von Unschärfen, Unwägbarkeiten oder Messfehlern bei anderen Daten(gruppen), wie z.B. Klimadaten, Boden- oder Vegetationsparametern, welche ebenfalls in das Modell eingehen (z.B. Beven 1993). Die verfügbare Datengrundlage ist häufig widersprüchlich. Ein klassisches Beispiel ist die sogenannte "Feld-" und die "Labor-" pF-Kurve (z.B. SCHERZER et al. 2003). Insgesamt erhofft man sich von der Kalibrierung eine höchstmögliche "Realitätsnähe" des Simulationsergebnisses und nimmt dabei bewusst Abstriche bei der Übertragbarkeit der Modellparameter und Ergebnisse auf andere Standorte/Gebiete in Kauf. Steht hingegen die Übertragbarkeit in die Fläche und die Vergleichbarkeit der Ergebnisse für weniger intensiv beobachtete Gebiete im Vordergrund, sollte eine konträre Vorgehensweise gewählt werden: Das Modell wird dann für die einzelnen Plots nicht "standortspezifisch kalibriert", sondern möglichst "konsistent parametrisiert" (z.B. FALK et al. 2008, SCHULTZE und SCHERZER 2011).

Bei den auf Standortebene in der Regel einzig verfügbaren bodenhydrologischen Vergleichsgrößen Bodensaugspannung und/oder Bodenwassergehalt handelt es sich um sogenannte "Zustandsvariablen" des Bodens und nicht um eine für viele Fragestellungen ebenfalls zentrale "Bilanzkomponente", wie es z.B. der vertikale Sickerwasseraustrag wäre. Prinzipiell ist somit davon auszugehen, dass simulierte Bodenzustände wie Trocken- oder Sauerstoffstress besser validierbar sind als der Sickerwasseraustrag. Abhilfe könnte hier z.B. ein flächendifferenziertes upscaling der Ergebnisse auf Einzugsgebietsebene mit Modellen wie SWAT (NEITSCH et al. 2002) oder WaSiM-ETH (SCHULLA und JASPER 1998, 2009) leisten. Auf dieser Ebene könnten simulierte Wasserausträge dann mit gemessenen Pegelabflüssen verglichen werden (z.B. РÖHLER et al. 2010).

Die Kalibrierung und Validierung von Wasserhaushaltsmodellen auf Grundlage von gemessenen Bodensaugspannungen unterliegt aufgrund des eingeschränkten Messbereichs von Tensiometern (< 800 hPa) Einschränkungen: In lang anhaltenden, stark ausgeprägten Trockenphasen liegen meist keine Messwerte vor. Hierdurch ist eine saugspannungsbezogene Überprüfung der Simulationsergebnisse in Trockenstressphasen nur eingeschränkt möglich. Dies lässt sich durch eine zusätzliche tiefendifferenzierte Messung des Bodenwassergehaltes und eine darauf aufbauende Ermittlung der Bodenwasservorräte lösen, wie es z.B. auf den Level II-Flächen Merzalben (Abschnitt 3.1.3) und Leisel (Abschnitt 3.1.9) durchgeführt wurde (vgl. auch Scherzer et al. 2003).

Der Antrieb von prozessorientierten Wasserhaushaltsmodellen erfolgt im Idealfall mit dem Freilandniederschlag. Alle weiteren Bilanzkomponenten (z.B. Verdunstung, Abfluss) werden dann durch das Modell berechnet, d.h. simuliert. Die Ergebnisse der Langzeituntersuchungen (1988 – 2009) des Wasserhaushalts der Level II – Flächen in Rheinland-Pfalz zeigten jedoch, dass sich das Interzeptionsmodul des Modells über einen so langen Zeitraum in der Regel nicht konsistent parametrisieren und gleichzeitig die Abweichung von gemessenen und simulierten Bestandesniederschlägen minimieren lässt. Ursachen für die Abweichungen sind z.B. inhomogene Klimazeitreihen durch die räumliche Verlagerung ("Umsetzen") von Klimastationen oder Messfehler des Bestandesniederschlages. Als Konsequenz davon wurde in der Regel auf den Bestandesniederschlag als treibende Modellvariable zurückgegriffen. Dies bietet den Vorteil einer optimalen Realitätsnähe der Wasserflüsse am oberen Rand des Waldbodens, hat aber gleichzeitig den Nachteil, dass die

Simulationsperiode auf den Messzeitraum des Bestandesniederschlages beschränkt ist. Unter anderem durch die zunehmende Relevanz von Klima- und Wasserhaushaltsprojektionen für das 21. Jahrhundert gewinnt die Simulation der Interzeption in den letzten Jahren an Bedeutung. Für Klimafolgenstudien (z.B. KARL et al. 2012) muss das Interzeptionsmodul daher zunächst aktiviert und separat kalibriert werden.

5 Zusammenfassung

Umfassende Kenntnisse über den Wasserhaushalt von Waldökosystemen sind eine entscheidende Grundlage für die Bewertung von Waldfunktionen sowie für die Einschätzung von Risikofaktoren für das Ökosystem und die forstwirtschaftliche Nutzung. So bestimmt der Bodenwasserhaushalt zum einen unmittelbar die Wasser- und Sauerstoffverfügbarkeit im Wurzelraum, zum anderen ist er die Grundlage für den Stofftransport und damit die Nährstoffversorgung der Pflanzen.

An der Forschungsanstalt für Waldökologie und Forstwirtschaft in Rheinland-Pfalz (FAWF) werden seit Mitte der 1980er Jahre Wasserhaushaltsuntersuchungen sowohl im Rahmen des forstlichen Umweltmonitorings, insbesondere des Level II-Programms, als auch bei Untersuchungen zur Kompensation von versauernd wirkenden Luftschadstoffeinträgen, zur Waldentwicklung nach Sturmwurf und zu den Auswirkungen von Kahllagen auf den Wasser- und Bioelementhaushalt durchgeführt. Dieser Bericht gibt einen Überblick der relevanten Datengrundlagen, der angewandten Methoden und der zentralen Ergebnisse.

Die direkte Messung von Bilanzkomponenten des Wasserhaushalts wie Evapotranspiration und Tiefensickerung ist ohne Störung des Systems unmöglich, die Verwendung eines numerischen Simulationsmodells daher unabdinglich. An der FAWF wird hierzu das prozessorientierte Modell COUPMODEL verwendet. Dieses ermöglicht eine simultane Modellierung der Bodenwasser- und -wärmedynamik eines Waldbestandes und eines horizontierten Bodenprofils auf Grundlage der Richards-Gleichung bzw. des Fourier-Gesetzes. Als standortspezifische Kalibrierparameter dienten in der Regel die hydraulische Leitfähigkeitsfunktion, der Wurzelwasserentzug und ggf. auch der Interzeptionsspeicher. An den Level II-Flächen wurde das Modell mit dem Bestandsniederschlag angetrieben. Für die Simulation der weiteren Flächen wurde der Freilandniederschlag als treibende Modellvariable eingelesen. Die Simulationsergebnisse wurden durch den Vergleich mit gemessenen Bodensaugspannungen, -wassergehalten, -wasservorräten und -temperaturen überprüft. Bei einer Fläche standen zusätzlich auch Messwerte des Grundwasserspiegels zur Verfügung.

Ein wesentlicher Einflussfaktor auf den Wasserhaushalt von Wäldern ist das Bestandesalter: Nach der Bestandesbegründung nimmt der Sickerwasseraustrag mit zunehmendem Bestandesalter zunächst ab und erreicht im Dickungsund Stangenholzstadium ein Minimum. Ältere Waldbestände im Baumholzstadium wiederum weisen in der Regel eine geringere Evapotranspiration und höhere Sickerwasserspenden auf. Der "Einflussfaktor Bestandesalter" liefert somit den zentralen Erklärungsbeitrag für die Wasserhaushaltsbilanzen der Aufforstungsflächen des Sukzessionsversuches und des Kahllagenexperiments. Auch der Wasserhaushalt der 16 untersuchten Bestände im Baumholzstadium zeigt deutliche Unterschiede: Die Spannbreite der Summe aus Transpiration und Evaporation reicht von 229 mm/a (Kompensationsfläche Adenau, Fichte; 25 % des FNS) bis 442 mm/a (Neuhäusel-Bims, Buche; 43 % des FNS), die der Interzeption von 154 mm/a (Gauchsberg, Eiche; 22 % des FNS) bis 485 mm/a (Birkenfeld, Fichte; 42 % des FNS). Die Summe aus Oberflächenabfluss, lateralem Abfluss und Tiefensickerung ist in Schaidt mit 197 mm/a (Eiche; 25 % des FNS) am geringsten und in Hermeskeil mit 678 mm/a (Fichte; 55 % des FNS) am größten. Für die Bestände im Baumholzstadium ergab sich sowohl für die Interzeption als auch für den Abfluss eine positive Korrelation mit der Höhe des Jahresniederschlags. Der Einfluss der Jahresmitteltemperatur und der Baumarten auf die Evapotranspiration und ihre Komponenten ließ sich nicht eindeutig zuordnen, da auch zwischen Baumart und Temperatur eine Korrelation besteht. Bei ansonsten vergleichbaren Bedingungen (FNS, Baumart, LT) führt eine hohe Bodenwasserverfügbarkeit im Wurzelraum (nFK) zu einer hohen Evaporation und Transpiration.

Auswertungen zum Trockenstress wurden mit dem auf ANDERS et al. (2002) zurückgehenden Konzept "Wasserverfügbarkeit < 40 % der nFK" durchgeführt. Das Jahr mit der ausgeprägtesten Bodentrockenheit im Untersuchungszeitraum war 2003, gefolgt von 1999 und 1991. An Standorten mit einer sehr hohen nFK im Wurzelraum (z.B. Neuhäusel-Bims) erwies sich die relative Betrachtung der Wasserverfügbarkeit jedoch als weniger geeignet, sodass hier der Abgleich mit weiteren Trockenstressindikatoren zu empfehlen ist. Sauerstoffmangel der Wurzeln in Feuchtphasen wurde potenziell für den grundwasserbeeinflussten Standort Schaidt ermittelt. Ansatzweise vergleichbare Situationen lassen sich den Simulationsergebnissen zufolge lediglich in Hermeskeil und Neuhäusel-Quarzit beobachten.

6 Summary

Introduction

A broad knowledge of the forest ecosystem's water balance is essential to evaluate the ecological and socio-economic effects of forests as well as to assess potential risks for the ecosystem and the forestry. The soil water balance, for example, directly determines the availability of water and oxygen in the rooting zone and indirectly regulates nutrient supply of trees.

The Research Institute for Forest Ecology and Forestry in Rhineland-Palatinate (FAWF) investigates the water balance of forest stands since the 1980s. This report gives an overview over the data basis, the applied methods and the most important results.

Methods

As direct measurements of the water balance components like evapotranspiration and deep percolation are impossible without disturbing the system, the application of simulation models is indispensable. At the FAWF the processbased model COUPMODEL is used. It allows a simultaneous modelling of water and temperature dynamics in forest stand and horizontal soil profiles by using the Richard's equation or the Fourier's law. The site specific calibration parameters are the hydraulic conductivity, the water uptake by the roots and the interception capacity. With these calibration parameters the vegetation parameters like the maximal rooting depth, leaf area index or interception capacity were adjusted in the model (e.g. Tabelle 5). At the sites of the Level II - program the model was driven with the throughfall (BNS) whereas at all other sites the bulk precipitation (FNS) was used. The simulation results were compared to measured soil water suctions (e.g. Abbildung 6), soil water contents (e.g. Abbildung 7 and Abbildung 10) and soil temperatures (e.g. Abbildung 8). At one site additional data of the ground water level was available (Abbildung 56).

The field capacity (FK), the permanent wilting point (PWP) and the available field capacity (nFK) were estimated from the model-pF-curve, which was derived from the laboratory-pF-curve (e.g. Tabelle 4). The FAO reference transpiration (i.e. evapotranspiration of a well defined grass cover) and the climatic water balance (indicator of the soil- and vegetation-independent water availability) at a site, were calculated (e.g. Tabelle 6). The simulated daily values of the water balance components were aggregated annually and the change in water storage was calculated (e.g. Tabelle 7 and Abbildung 2). To characterise the intraannual and interannual variability of the water availability in the rooting zone the range and mean of soil water content was calculated for each day of the year and in addition compared to the values of the drought year 2003 (e.g. Abbildung 3). As an indicator for drought stress

the periods with a soil water availability in the rooting zone smaller than 60 % of nFK (reduction of diameter growth increase, ANDERS et al. 2002) and 40 % of nFK (no diameter growth, ANDERS et al. 2002) were compared for the different sites (Abbildung 4). In order to evaluate the availability of oxygen the air content per pore volume (AIR30) was calculated for the upper 30 cm of the soil profile (Abbildung 5, Falk und OSENSTET-TER 2010).

Results and discussion

Water balance

The site and stand specific height of water balance components (interception, evaporation, transpiration, discharge) is influenced by the complex interaction of climatic, edaphic and vegetative factors. Hereby, the age of the stand plays an important role: During the first years after reforestation the water balance of the forest site is very similar to that of an agricultural site. At an age of about 20 years (pole stand life-stage) deep percolation usually reaches a minimum (e.g. SCHERZER 2001). Older forest stands usually show a reduced evapotranspiration (Peck und Mayer 1996) and higher amounts of deep percolation (MÜLLER 1996). Hence, the age as driving factor mainly controls the water balance development of (natural) reforestation sites (succession and clear cutting experiment: chapter 3.3 and 3.4). The nine sites of the Level II-program, the three sites of the compensation experiment and the four sites of the succession experiment have an age from 80 to 200 years (reference year 2010) and therefore show a state of old forest stands. However, the water balance differs within this group of older forest stands (Tabelle 159 and Abbildung 133): The sum of transpiration and evaporation, for example, is with 442 mm/a (43 % of FNS, beech) highest in Neuhäusel-Bims and with 229 mm/a (25 % of FNS, spruce) lowest at the compensation site in Adenau. Comparing the relative amounts, Hermeskeil (spruce) has with 20 % of FNS the smallest sum of transpiration and evaporation and Schaidt (oak) with 54 % of FNS the highest. The interception reaches values between 154 mm/a (Gauchsberg, oak; 22 % of FNS) and 485 mm/a (Birkenfeld, spruce; 42 % of FNS), whereby the relative amount is smallest in

Merzalben (16 % of FNS, oak). The discharge, as sum of surface runoff, lateral drainage and deep percolation, is smallest in Schaidt (197 mm/a, 25 % of FNS, oak) and highest in Hermeskeil (678 mm/a, 55 % of FNS, spruce). Altogether, the influence of the different driving factors is here, compared to the younger forest stands, less evident (Abbildung 134 and Abbildung 135). Concerning the interpretation of the results, one has to keep in mind that the driving factors are intercorrelated (e.g. correlation between climate and tree species).

The annual precipitation is positively correlated with the amount of discharge and interception. On the other hand, the annual sum of evaporation and transpiration is not dependent on the amount of annual precipitation. The influence of air temperature on the water balance components is difficult to define, as there exists a strong interaction with the cultivated tree species: In case of interception one would expect, a positive correlation between interception and temperature if the water availability is constant due to the energy dependence of the evaporation process. However, at the 16 considered sites the correlation is negative. This implies that the water availability and not the available energy is the dominant factor. On the other hand the water availability depends on the interception storage (LAI · interception capacity) and its input (bulk precipitation). In addition to the already described positive correlation with the bulk precipitation, stand specific parameters are of importance, too: The interception storage of the spruce stands (blue points in Abbildung 135) is higher than that of the oak stocks (black points). As oaks are cultivated in warmer and spruce in colder climate, this results in a negative correlation between annual interception and temperature. The relative amount of interception (% of FNS), which reaches average values of 34 % for the spruce sites, 27 % for the pine sites, 22 % for the oak sites and 21 % for the beech sites, coincides with the results of PECK und MAYER (1996). The correlation of the sum of transpiration and evaporation with the temperature is likely influenced by the region-dependent cultivation of the different tree spezies, too.

At the three sites with beech stocks one can see

that air temperature and tree species are not the only driving factors which influence transpiration. The low water availability (especially during dry periods) of the beech in Kirchheimbolanden is due to a low available water content (nFK) in the rooting zone and a relatively low annual precipitation. At the pumice-site in Neuhäusel the evapotranspiration is highest due to the high water storage capacity of the soil. The analysis of the soil-related driving factor was done without the sites of the succession and compensation experiments as the nFK was not determined for these sites so far.

The water availability coefficients, which range from extremely wet (äußerst frisch) to moderately dry (mäßig trocken), give a hint of the water availability at a specific site. The sum of evaporation and transpiration of the three spruce stands, which have water budget levels from very wet (sehr frisch) to rather wet (ziemlich frisch), show a range from 229 to 293 mm/a. The spruce's water availability seems not to be limited as additional water at the wetter sites results in higher discharge (Abbildung 135). At the beech sites the situation is different. Here, the sum of evaporation and transpiration is much lower in Kirchheimbolanden (moderately dry, mäßig trocken) than in Neuhäusel-Quarzit (very wet, sehr frisch) and Neuhäusel-Bims (extremely wet, äußerst frisch). The discharge is lowest at the Bims-site as the water can be stored most efficiently here. The site in Schaidt is influenced by groundwater (water availability coefficient very wet, sehr frisch) which ensures a sufficient water supply of the oak stand. Due to the very low annual precipitation (788 mm/a) Schaidt shows the lowest discharge of all Level II-sites.

Drought and oxygen stress

At the Level II-sites the meteorological drought year 2003 is characterised by a precipitation of only 70 – 80 % of the average amount and promounced drought periods in summer. As expected the year 2003 is therefore also the year with the driest soils in the period of examination. At 7 of 9 Level II–sites the soil water availability falls below 40 % of nFK (Tabelle 160, left). Further years with potential drought stress are 1999 (5 sites with critical water availability) and 1991 (4 sites). The site in Neuhäusel-Bims, which is characterised by a very high nFK in the rooting zone (about 460 mm, Abbildung 36), shows the restrictions of this concept of assessing the drought stress, which is based on ANDERS et al. (2002): Due to the analysis of the relative value (e.g. 40 % of nFK) the drought stress is apparently overestimated here. In Neuhäusel-Bims even in times of a water availability < 40 % of nFK the soil contains more water than soils of other sites can maximally store. The concept of differential transpiration ("Transpirationsdifferenz", HAMMEL und Kennel 2001, Schultze et al. 2005, Falk et al. 2008), which was already applied to forests in Rhineland-Palatinate by SCHULTZE und SCHERZER (2011), as well as the additional analysis of soil suction (pF-values) could contribute to a broader evaluation of drought stress.

Concerning the potential oxygen deficits for the roots during wet periods the groundwater influenced Level II-site in Schaidt differs from the other sites (Tabelle 160, right). Based on the simulation results only in Hermeskeil, Kirchheimbolanden and Neuhäusel-Quarzit a nearly similar situation can be observed. In Kirchheimbolanden the model possibly overestimates the oxygen stress. However, the soilphysical databasis of Kirchheimbolanden is not comparable with that of the other sites: Due to the high proportion of stones even in the topsoil the soil laboratory-pFcurves can not be obtained in Kirchheimbolanden.

Discussion of methods

During the calibration process the simulated and measured indicator parameters (e.g. soil suction, soil water content) were fitted by expert knowledge. The calibration implies a correction of fuzziness, noise or measurement errors of model-inputs like climate data, soil- or vegetation-parameters (e.g. BEVEN 1993). In addition the available data basis is often inconsistent. A typical example is the field- and laboratory-pFcurve (e.g. SCHERZER et al. 2003). Overall one tries to achieve the best possible fit of simulation results to reality and knowingly accepts a decline in the transferability of the model parameters and results to other sites. However, if the goal of a study is the spatial interpolation of the simulation results and the comparison of the results of less intensivly monitored sites, a contrary approach has to be chosen. Then, the model will not be calibrated site-specific, but rather most consistently (z.B. FALK et al. 2008, SCHULTZE und SCHERZER 2011).

At the plot scale the only available soil hydrologic measurements are usually the soil suction and/or the soil water content, which are state variables of the soil and not components of the water balance. Therefore one can assume that simulated state variables of the soil, like droughtor oxygen stress, can be better validated than e.g. deep percolation. An upscaling of the results with catchment models like SWAT (NEITSCH et al. 2002) or WaSiM-ETH (SCHULLA und JASPER 1998, 2007) could help to improve the validation. On this scale simulated discharge could be evaluated against discharge measured by gauges (e.g. PÖHLER et al. 2010).

The calibration and validation of water balance models against soil suction is on the other hand restricted by the measurement range of tensiometers (< 800 hPa): During long lasting, pronounced drought periods usually no measured values are available. Therefore, the validation of the simulation results against measured soil suction is restricted during drought periods. This problem can be solved by a depth differentiated measurement of the soil water content which then can be used to calculate the soil water storage (SCHERZER et al. 2003), like it was done at the Level II - sites Merzalben (chapter 3.1.3) and Leisel (chapter 3.1.9).

If possible, the bulk precipitation should be used as driving input-variable in processbased water balance models. The other components of water balance (e.g. evapotranspiration and discharge) will then be simulated by the model. Results of the long-lasting (1988 - 2009) experiments at the Level II-sites in Rhineland-Palatinate showed however that the interception modul usually can not be unitary parametrisized for such a long duration while at the same time differences between simulated and measured throughfall are kept at a minimum. Reasons for the discrepancy are for example inhomogeneous climate time series due to relocation of the measurement site or errors in measured throughfall. As a consequence the model usually was driven with the throughfall as input variable. This has the positiv effect that the simulated water amount reaching the soil surface better represents reality. On the other hand, the simulation period is then restricted to the available period of measured throughfall. Due to the increasing importance of climate and water balance projections for the 21st century, the relevance of the simulation of interception has increased during the last years. In case of climate change simulations at the Level II-sites (e.g. KARL et al. 2012) the interception modul must be activated and separately calibrated.

7 Abkürzungsverzeichnis und Glossar

λ	Porenverteilungsindex (Modellparameter Boden)
1	Porengräßenverteilung [-]
ì	spezifische Verdampfungswähme von Wasser (LZ-2) (= 2,45*106 J kg-1 bei 20°C)
automat.	automatisch
B	Boden-Wärmellusscichte (MZ-1)
BNS	Bestandsniederschlag (mm)
Condition	mooimale Stomataleittähigkeit (m/s)
COUPMODEL	Coupled heat and mass transfer model for soil-plant-atmosphere systems
ср	Wärmekapazität von Luft bei konstanten Druck [L2Z-2T-1] (= 1010 J kg-1 K-1 für Standardbedingungen)
Δ	Steigung der Kurve des Sättigungsdampfdrucks [ML-1Z-2T-1]
Е	Evapolizarispiration (LZ-1), Indices: I = Interzeption, E = Evaporation, T = Transpiration
e	Dampfdruck der Luft (ML-1Z-2)
EE	verdunstendes Wesservolumen pro Fläche (LZ-1)
63	Sättigungsdampfdruck der Luft bei der jeweiligen Temperatur (ML- 1Z-2)
ലന്.	exponentielle Abnahme der Wurzeldichte mit zunehmender Bo- dentiefe
FNS	Freilandniederschlag (mm)
Y	Psychrometer-Konstante [ML-1Z-2T-1]
grad (v _á	Gradient des hydraulischen Potenzials in allen drei Raumrichtun- gen [-]
GS	Giobalstrahlung
Ŀ	Flussdichte (LZ-1)
Kalibrierung	Unter Kalibrierung versteht man die systematische Veränderung von Eingsbeparametern, um eine möglichst gute Übereinstimmung zwischen einer unabhängigen Messgröße und einer simulierten Zielfunktion zu erreichen.

LAI	Leaf Area Index, Blattlächenindex [-]
lf	relative Luftieuchie (%)
FK	Feldkapazībāt
к	hydraulische Leitfähigkeit (LZ-1)
Kenadate	gesättigte hydraulische Leitfähigkeit der Bodenmatrix (LZ-1)
Kenation	Leitfähigkeit der Makroporen (LZ-1)
K ₍₁₎	hydraulische Leitfähigkeit als Funktion des Wassergehalts (LZ-1)
LT	Lufttemperatur (°C)
п	Tortuositätsfaktor (empirisch) [-]
п.Б.	nicht bestimmt
nFK	nutzbare Feldkapazilät
Р	Niederschlag (LZ-1)
Pi	interzipierter Niederschlag (LZ-1)
Psie	Lufteintrittspunkt (Modelparameter Boden)
v	Saugspannung (L)
Ψ.	Lufteintrittspunkt [L]
Ψ.	hydraulisches Potenzial
Ψ_	Matricpotenzial (L)
₩ _t	Gravitationspotenzial [L]
PWP	permanenter Welkepunkt
q1	maximaler Spitzenabiluss
q2	maximaler Basisabiluas
R	Abliuss [LZ-1], indices: $O = Oberflächenabliuss, L = laterater Abfluss / interflow, T = Tiefensäckerung$
13	aerodynamischer Widerstand (L-1Z), Funktion des Windprofils
Rin	Nettostrahlung (MZ-1)
pl	Dichte der Luft (ML-3)
r _e	Bestandes-, Oberflächen- oder stomatärer Widerstand [L-1Z]
ΔS	Speicheränderung (LZ-1)

S,	efiektive Sättigung [-]
S _{(1,3,24})	Senkenterm in den drei Raumrichtungen [Z-1]
S _(2,1)	Senkenterm eindimensional (Z-1)
Sim	Interzeptionsspeicherkapazität je Einheit des LAI (L)
Simex	maximale Speicherfähigkeit der Vegetation [L]
Si(1-1)	gespeichertes Wasser, das vom letzten Berechnungsintervall mit der Länge At übrig ist. [L]
TDR	"time domain reflectometry", Meastechnik zur Erfassung des Bo- dermassergehaltes
Tens.	Tensiometer
ð	Wassergehalt (L ³ L ⁻³)
0,	residualer Wassergehalt
θ,	Porosität
Validierung	Validierung bezeichnet eine Überprüfung der Zielfunktion durch unabhängige Messdaten, welche nicht in den Kalibrierprozess einbezogen waren.
WHH	Wasserhaushalt
Wp ald	Boderwasserverfügbarkeit im Wurzelraum
WS	Windgeschwindigkeit (m/s)
ZIMEN	Zentrales Emissionsmessnetz Rheinland-Pfalz
25.8	Grundwasserstand
z1	Bodentiefe, ab welcher q1 zu sinken beginnt
2	Bodentiefe, ab welcher q2 zu sinken beginnt

8 Literaturverzeichnis

- ABABOU, R., SAGAR, B., WITTMEYER, G. (1992): Testing procedures for spatially distrib-uted flow models; Advances in Water Resources 15, 181-198
- AG BODEN (2005): Bodenkundliche Kartieranleitung; 5., verbesserte und erweiterte Auflage, Hannover
- ALAVI, G., JANSSON, P-E., HÄLLGREN, J-E., BERGHOLM, J. (2001): Interception of a Dense Spruce Forest, Performance of a Simplified Canopy Water Balance Model. Nordic Hydrology, 32 (4/5): 265-284
- ALLEN, R.G., PERIERA, L.S., RAES, D., SMITH, M. (1998): Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and drainage pa-per, 56. Logan, USA
- ANDERS, S., BECK, W., BOLTE A., HOFMANN, G., JENSSEN, M., KRAKAU, U., MÜLLER, J. (2002): Ökologie und Vegetation der Wälder Nordostdeutschlands., Verlag Dr. Kessel, Oberwinter 283 S.
- AUTORENKOLLEKTIV (1991): Untersuchungen zum Zusammenhang zwischen Sturm- und Immissionsschäden im Vorderen Hunsrück – "SIMS". Mitteilungen aus der Forstlichen Versuchsanstalt Rheinland-Pfalz Nr. 19/91; 151 S.
- BATJES, N.H. (1996): Development of a world data set of soil water retention properties using pedotransfer rules. Geoderma 71, 31-52
- BAUMGARTNER, A., LIEBSCHER, H. J. (1990): Allgemeine Hydrologie Quantitative Hydrologie; Gebrüder Borntraeger, Berlin und Stuttgart
- BEVEN, K. (1993): Prophecy, reality and uncertainity in distributed hydrological modelling; Advances in Water Resources 16, 41-51
- BIEMELT, D. (2001): Bestimmung der Grundwasserneubildung auf Offenlandbereichen der Lausitzer Bergbaufolgelandschaft; Aktuelle Reihe (1/2001) (ISSN 1434-6834); Brandenburgische Technische Universität Cottbus - Fakultät für Umweltschutz und Verfahrenstechnik, 126 S.
- ВLOCK, J. (1987): Umweltkontrolle im Wald Immissions- und Wirkungsuntersuchungen in Rheinland-Pfalz. Der Forst- und Holzwirt Nr. 15, 42. Jg., 412-414
- ВLOCK, J. (2006): Stickstoffbelastung der rheinland-pfälzischen Wälder. Mitteilung aus der FAWF Rheinland-Pfalz, Nr. 60/06, 1-31
- ВLOCK, J., ВОРР, O., GATTI, M., HEIDINGSFELD, N., ZOTH, R. (1991): Waldschäden Nähr- und Schadstoffgehalte in Nadeln und Waldböden in Rheinland-Pfalz. Mitteilung aus der FVA Rheinland-Pfalz, Nr. 17/91, 237 S.
- ВLOCK, J., SCHUCK, J., ZUM HINGSTE, F.W. (2006a): Untersuchungen über die Auswirkungen einer Kahllegung nach Fichtenbestockung auf einem Pseudogley und einer Braunerde im Vorderen Hunsrück. Unveröffentlichter Projektbericht, FAWF, Abt. Waldschutz, 19 S. + Anhang
- ВLOCK, J., SCHUCK, J., ZUM HINGSTE, F.W. (2006b): Prüfung der Auswirkungen von sturm- und borkenkäferbedingten Bestandeslücken auf den Stoffhaushalt eines Fichtenökosystems. Unveröffentlichter Projektbericht, FAWF, Abt. Waldschutz, 17 S. + Anhang
- BLOMBÄCK, K., STÄHLI, M., ECKERSTEN, H. (1995): Simulation of water and nitrogen flows and plant growth for a winter wheat stand in central Germany; Ecological modelling 81, 157-167
- BOTTERWEG, P. (1995): The user's influence on model calibration results: An example of the model SOIL, independently calibrated by two users; Ecological modelling, 81, 72-82
- BOUTEN, W. (1992): Monitoring and modelling forest hydrological processes in support of acidification research; PhD-thesis, Universität Amsterdam, 211 S.
- BOUTEN, W. (1995): Soil water dynamics of the solling spruce stand, calculated with the forhyd simulation package; Ecological Modelling, 83, 67-75
- BRAHMER, G. (1990): Wasser- und Stoffbilanzen bewaldeter Einzugsgebiete im Schwarzwald unter besonderer Berücksichtigung naturräumlicher Ausstattungen und atmogener Einträge; Freiburger Bodenkundliche Abhandlungen, Bd. 25
- Вкоокs, R. H., Corey, A. T. (1964): Hydraulic properties of porous media; Hydrology Paper No. 3, Colorado State University, Fort Collins, Colorado, 27 S.
- CHRISTIANSEN, J. R., ELBERLING, B., JANSSON, P. E. (2006): Modelling water balance and nitrate leaching in temperate Norway spruce and beach forests located on the same soil type with the CoupModel. Forest Ecology and management 237 (1-3), 545-556
- CIENCIALA, E., ECKERSTEN, H., LINDROTH, A., HÄLLGREN, J. E. (1994): Simulated and measured water uptake by Picea abies under non-limiting soil water conditions; Agricultural and Forest Meteorology 71, 147-164

- DEHNER, U., JUNG, M., STEINRÜCKEN, U., WIESNER, T. (2011): Statusbeprobung von Bodendauerbeobachtungsflächen in Rheinland-Pfalz. Landesamt für Umwelt, Wasserwirtschaft und Gewerbeaufsicht Rheinland-Pfalz (Hrsg.), Mainz, 30 S.
- DICKINSON, R. E. (1984): Modelling evapotranspiration for three-dimensional global climate models.- In: Hansen, J.E. & Takahashi, T. (eds.): Climate Processes and Climate Sensitivity. AGU Geophysical Monograph 29, 58 - 72
- DURNER, W. (1991): Vorhersage der hydraulischen Leitfähigkeit strukturierter Böden; Bayreuther Bodenkundliche Berichte Bd. 20, 180 S.
- ECKERSTEN, H., GÄRDENÄS, A., JANSSON, P. E. (1995): Modelling seasonal nitrogen, carbon, water and heat dynamics of the solling spruce stand; Ecological modelling 85, 119 129
- FALK, W., DIETZ, E., GRÜNERT, S., SCHULTZE, B., KÖLLING, C. (2008): Wo hat die Fichte genügend Wasser? Neue überregional gültige Karten des Wasserhaushalts von Fichtenbeständen verbessern die Anbauentscheidung. LWF aktuell 66, 21-25
- FALK, W.,OSENSTETTER, S. (2010): Konzept für ein quantitatives Verfahren zur Kennzeichnung des Lufthaushaltes von Waldböden. Posterbeitrag, gem. Koll. des DBG-Arbeitskreises Waldböden, der Sektion Wald und Wasser im Verband Forstlicher Versuchs- und Forschungsanstalten und des vTi Eberswalde in Freiburg am 18. -19. Mai 2010
- FALK, W., OSENSTETTER, S. (2011): Quantitative Kennzeichnung des Lufthaushaltes von Waldböden. Berichte Freiburger Forstliche Forschung, Heft 88: 131-137
- FEDDES, R. A., KABAT, P., VAN BAKEL, P.J.T., BRONSWIJK, J.J.B., HALBERTSMA, J. (1988): Modelling soil water dynamics in the unsaturated zone state of the art; Journal of Hydrology 100, 69-111
- FEDERER, C. A. (1995): BROOK90: A simulation model for evaporation, soil water and streamflow, Version 3.1. Computer freeware and documentation; USDA Forest Service, PO Box 640, Durham, New Hampshire, USA
- FEDERER, C. A., LASH, D. (1978): BROOK: A hydrologic simulation model for eastern forests; University of New Hampshire, Water Resources Research Center, Research Report 19, 94 S. Durham, New Hampshire, U.S.A. (überarbeitet 1983)
- FLÜHLER, H., GERMANN, P., RICHARD, F., LEUENBERGER, J. (1976): Bestimmung von bodenhydraulischen Paramtern für die Wasserhaushaltsuntersuchungen in natürlich gelagerten Böden; Z. Pflanzenern. Bodenk. 3, 329 - 342
- GÄRDENÄS, A. I., JANSSON, P. E. (1995): Simulated water balance of scots pine stands in sweden for different climate change scenarios; Journal of Hydrology 166, 107-125
- GREEN, R. E., AHUJA, L. R., CHONG, S. K. (1986): Hydraulic conductivity, diffusivity and sorptivity of unsaturated soils: Field methods; In: Klute, A. (Hrsg.): Methods of soil analysis; Vol. 1: Physical and Mineralogical Methods, 2nd Ed., Agronomy series 9(1), American Society of Agronomy, Madison, Wisconsin, 771-798
- GREVE, M. (2010): Vergleich von Methoden zur Erhebung des Blattflächenindex in Wäldern. Diplomarbeit der Universität Trier, Fachbereich Geographie/Geowissenschaften/Geobotanik, 170 S.
- GUSTAFSSON, D., LEWAN, E., JANSSON, P-E. (2004): Modeling water and heat balance of the Boreal landscape comparison of forest and arable land in Scandinavia. Journal of Applied Meteorology 43: 1750-1767
- HAMMEL, K. U., KENNEL, M. (2001): Charakterisierung und Analyse der Wasserverfügbarkeit und des Wasserhaushalts von Waldstandorten in Bayern mit dem Simulationsmodell BROOK90. Forstliche Forschungsberichte München 185, 135 S.
- HARTGE, K. H., HORN, R. (1992): Die physikalische Untersuchung von Böden; Enke Verlag, Stuttgart
- HARTGE, K. H., HORN, R. (1999): Einführung in die Bodenphysik; Enke Verlag, Stuttgart
- HILLEL, D. (1980): Fundamentals of Soil Physics; Academic Press, New York
- НОRMANN, G. (1997): SIMPEL Ein einfaches, benutzerfreundliches Bodenwassermodell zum Einsatz in der Ausbildung; Deutsche Gewässerkundliche Mitteilungen 41(2), 67-72
- HÖRMANN, G., MEESENBURG, H. (2000): Die Erfassung und Modellierung des Wasserhaushaltes im Rahmen des Level II-Programms in der Bundesrepublik Deutschland; Forstarchiv 71, 70 - 75
- НОRMANN, G., SCHMIDT, J. (Hrsg.) (1995): Dokumentation von Wasserhaushaltsmodellen; Berichte des Forschungszentrums für Waldökosysteme, Göttingen, Reihe B 42, 111 S.
- HOYNINGEN-HUENE, J. von (1983): Die Interzeption des Niederschlags in landwirtschaftlichen Pflanzenbeständen; Schriftenreihe DVWK 57, 1-53
- Huss, J., SCHMIDT-SCHÜTZ, A., SCHÖLZKE, D. (1995): Gelenkte Sukzessionen mit Hilfe von Pioniergehölzen als Alternativen zu Kahlflächenaufforstungen. Forschungsbericht, Projektnummer 209126.01, 16 S.

- Huwe, B. (1990): WHNSIM. Ein Modell zur Simulation des Wasser-, Wärme- und Stickstoffhaushalts landwirtschaftlich genutzter Böden: Programmdokumentation; Institut für Bodenkunde und Standortslehre, Fachgebiet Bodenphysik, Universität Hohenheim, 96 S.
- HUWE, B., PLOEG, R. R. VAN DER (1988): Modelle zur Simulation des Stickstoffhaushalts von Standorten mit unterschiedlicher landwirtschaftlicher Nutzung; Mitteilungen des Institutes für Wasserbau, Universität Stuttgart 69, 213 S.
- JANSSEN, P. H. M., P. S. C. HEUBERGER, P. S. C. (1995): Calibration of processoriented models; Ecological Modelling 83, 55 - 66
- JANSSON, P. E. (1996): Simulation Model for Soil Water and Heat Conditions Description of the SOIL Model. Draft March 1996; 1 - 80
- JANSSON, P. E., HALLDIN, S. (1979): Model for the annual water and energy flow in a layered soil; in: Halldin, S. (Hrsg.): Comparison of forest and energy exchange models. Society for Ecological Modelling, Copenhagen, 145 163
- JANSSON, P. E., KARLBERG, L. (*2010*): Coupled heat and mass transfer model for soilplant-atmosphere systems. ftp://www.lwr.kth.se/CoupModel/CoupModel.pdf (Abruf am 3.12.2010)
- JANSSON, P. E., SVENSSON, M., KLEJA, D. B., GUSTAFSSON, D. (2007): Simulated climate change impacts on fluxes of carbon in Norway spruce ecosystems along a climatic transect in Sweden. Biogeochemistry
- Jäsche, P., Scheibke, R. (1993): Bestimmung hydraulischer Parameter an einem Bodenprofil; Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 72, 139-142
- ЈОНNSSON, H., BERGSTRÖM, L., JANSSON, P. E. (1987): Simulated Nitrogen Dynamics in a layered agricultural soil; Agriculture, Ecosystems and Environment 18, 333-356
- KARL, S., BLOCK, J., SCHULTZE, B., SCHERZER, J. (2012): Untersuchungen zu Wasserhaushalt und Klimawandel an ausgewählten forstlichen Monitoringflächen in Rheinland-Pfalz; Mitteilungen der Forschungsanstalt für Waldökologie und Forstwirtschaft Rheinland-Pfalz, Nr. 72/12 143 Seiten.
- KATZUR, J., LIEBNER, F. (1995): Erste Ergebnisse eines Großlysimeterversuchs zu den Auswirkungen der Abraumsubstrate und Aschemelioration auf Sickerwasserbildung und Stofffrachten der Sickerwässer auf den Kippen und Halden des Braunkohlebergbaus - 1. Mitteilung: Versuchsbeschreibung, Funktionskontrolle und physikalisch-chemische Parameter der Sickerwässer; Arch. Acker- Pfl. Boden. 39, 19 - 35
- KERSTEN, M. S. (1949): Thermal properties of soils. Institut of Technology, Eng. Exp. Station, Bulletin No. 28, 1 26
- KLUTE, A. (Hrsg.) (1986): Methods of soil analysis; Vol. 1: Physical and Mineralogical Methods, 2nd Ed., Agronomy series 9(1), American Society of Agronomy, Madison, Wisconsin
- KNIEß, A., SCHERZER, J. (2003): Plausibilitätsprüfung und Lückenersatz meteorologischer Daten. In: SCHERZER, J., SUCKOW, F., MÜLLER, J., WEGEHENKEL, M., LUKES, M., HAMMEL, K., KNIEß, A., MEESENBURG, M. (2003): Wasserhaushalt von Waldökosystemen: Methodenleitfaden zur Bestimmung der Wasserhaushaltskomponenten auf Level II-Flächen; Hrsg.: Bundesministerium für Ernährung, Landwirtschaft und Forsten, Rochusstraße 1, 53123 Bonn
- LANDSBERG, J. J., KAUFMANN, M. R., BINKLEY, D., ISEBRANDS, J., JARVIS, P. G. (1991): Evaluating progress towards closed forest models based on fluxes of carbon, water and nutrients. Tree Physiology 9, 1-15
- LECKEBUSCH, G.C., ULBRICH, U., FRÖHLICH, L. & PINTO, J.G. (2007): Property loss potentials for European midlatitude storms in a changing climate. Geophysical Research Letters, 34 (L05703), DOI:10.1029/2006g1027663
- LEGOVIC, T. (1997): Ecological modelling Internet resources; Ecological Modelling 100, 163-169
- LISCHEID, G. (1995): Prozessorientierte hydrologische Untersuchungen am Kleinen Gudenberg bei Zierenberg (Nordhessen) in verschiedenen Skalenbereichen; Berichte des Forschungszentrums Waldökosysteme der Universität Göttingen, Bd. 128, Reihe A, 1 - 132
- MELLERT, K. (2010): Zuviel des Guten? Über die Gefährdung der Waldböden durch Stickstoffeinträge. In: AgrarBündnis e.V. (Hg.): Der kritische Agrarbericht 2010
- Момтеітн, J. L. (1965): Evaporation and environment. In: Fogg, G. E. (Hrsg.): The State and Movement of Water in Living Organisms, 19th Symp. Soc. Exp. Biol., The Company of Biologists, Cambridge, 205 234
- MUALEM, Y. (1976): A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res., 12, 513 - 522
- MÜLLER, J. (1996): Beziehungen zwischen Vegetationsstrukturen und Wasserhaushalt in Kiefern- und Buchenökosystemen; in: Mitteilungen der Bundesforschungsanstalt für Forst- und Holzwirtschaft Nr. 185, 112 - 128

- NEITSCH, S. L., ARNOLD, J. G., KINIRY, J. R., WILLIAMS, J. R., KING, K. W. (2002): Soil Water Assessment Tool Theoretical Documentation. http://www.brc.tamus.edu/swat/downloads/doc/swat2000theory.pdf (Abruf am 1.12.2010)
- Реск, А., Mayer, H. (1996): Einfluss von Bestandesparametern auf die Verdunstung von Wäldern; Forstwiss. Centralblatt 115, 1 - 9
- РINTO, J.G., FRÖHLICH, E.L., LECKEBUSCH, G.C. & ULBRICH, U. (2007): Changing European storm loss potentials under modified climate conditions according to ensemble simulations of the ECHAM5/MPIOM1 GCM. Natural Hazards and Earth System Sciences, 7, 165-175
- РÖHLER, H., SCHULTZE, B., SCHERZER, J. (2010): Auswirkungen des Klimawandels auf den Wasserhaushalt eines bewaldeten Kleineinzugsgebietes im Hochsauerland, Freiburger Forstliche Forschung, in Druck
- RANG, J. (2003): Handbuch und mathematische Grundlagen von METEODATA (Version 2.0.1); Mathematik-Bericht 2003/2 Technische Universität Clausthal, Institut für Mathematik, 47 S.
- RASTIN, N. (1991): Immissionsbelastung der SIMS-Standorte. Mitteilungen aus der Forstlichen Versuchsanstalt Rheinland-Pfalz Nr. 19/91, S. 28-39
- RAWLS, W. J., BRAKENSIEK, D. L. (1989): Estimation of Soil Water Retention and Hydraulic Properties; In: Morel-Seytoux, H. J. (Hrsg.): Unsaturated Flow in Hydrologic Modelling, Theory and Practice; Kluwer Academic Publishers, 275-300
- RICHARDS, L. A. (1931): Capillary conduction of liquids in porous mediums. Physics, 1, 318 333
- RICHTER, D. (1995): Ergebnisse methodischer Untersuchungen zur Korrektur des systematischen Messfehlers des Hellmann-Niederschlagsmessers. Berichte des Deutschen Wetterdienstes 194, 93 S.
- RUNNING S. W., COUGHLAN, J. C. (1988): A general model of forest ecosystem processes for regional applications; I. Hydrologic balance, canopy gas exchange and primary production processes; Ecological Modelling 42, 125-154
- RUNNING, S. W., GOWER, S. T. (1991): FOREST BGC, a general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets; Tree Physiology 9, 147 160
- SCHAAF, W. (1992): Elementbilanz eines stark geschädigten Fichtenökosystems und deren Beeinflussung durch neuartige basische Magnesiumdünger; Bayreuther Bodenkundliche Berichte, Bd. 23
- SCHAAF, W., WEISDORFER, M., HÜTTL, R. F. (1995): Soil solution chemistry and element budgets of three scots pine ecosystems along a deposition gradient in north-eastern Germany. Water, Air and Soil Pollution, 85: 1197 - 1202
- SCHAAF, W., HÜTTL, R. (2006): Experiences with liming in European countries results of long-term experiments. Journal of Forest Science, 52 (Special Issue), S. 35-44
- SCHÄFER, D., MONTENEGRO, H., HERRLING, B. (1994): Bestimmung bodenhydraulischer Parameter unter Verwendung von Labor- und Freilanddaten: Ein Vergleich unterschiedlicher Verfahren; Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 74, 307-310
- SCHEIBKE, R. (1998): Die Bestimmung der ungesättigten hydraulischen Leitfähigkeit in Böden mit der Augenblicksprofilmethode - Fehleranalyse, Feldexperiment und Simulation; Bayreuther Forum Ökologie, Band 57
- SCHERZER, J. (2001): Der Wasserhaushalt von Kiefernforsten auf Kippböden der Niederlausitz; Cottbuser Schriften zu Bodenschutz und Rekultivierung, Band 16
- SCHERZER, J., WUNN, U., SCHULTZE, B. (2003): Einfluss des Faktorenkomplexes "Wasserhaushaltsmodell Anwender" auf Modellparameter und Simulationsergebnisse am Beispiel eines Eichenmischbestandes im Pfälzerwald; Freiburger Forstliche Forschung 49, S. 207-218
- SCHMIDT, J. P. (1991): Die Beziehung der hydromorphologischen Merkmale zum Wasserhaushalt auf Waldstandorten im Hunsrück. Mitteilungen aus der Forstlichen Versuchsanstalt Rheinland-Pfalz Nr. 19/91, S. 13-27
- SCHMIDT, J. P. (1992): Die Beziehung der hydromorphologischen Merkmale zum Wasserhaushalt auf drei Waldstandorten in Hunsrück. Berichte des Forschungszentrums Waldökosysteme Göttingen, Reihe A, Bd. 95, 149 S.
- Scнмidt-Schütz, A., Huss, J. (1996): Gelenkte Sukzessionen mit Hilfe von Pioniergehölzen als Alternativen zu Kahlflächenaufforstungen. Veröff. PAÖ, 16, 307-324
- SCHRÖDER, M. (1975): Erste Ergebnisse der Großlysimeteranlage St. Arnold; Wasserwirtschaft 65, 301 305
- Schüler, G. (1998): Schwemmfächer im nördlichen Oberrheingraben als Waldstandorte. Habil.Schr., Univ. Trier; Mitt. der Landesforstverwaltung Rheinland-Pfalz, Nr. 16/1999 186 S.
- SCHÜLER, G. (2002): Schutz versauerter Böden in nachhaltig bewirtschafteten Wäldern Ergebnisse aus 10-jähriger interdisziplinärer Forschung. Allgemeine Forst- und Jagdzeitung, 173, S. 1-7

- SCHULLA, J., JASPER, K. (1998): Modelbeschreibung WaSiM-ETH. Technischer Bericht, Institut für Atmosphäre und Klima. ETH Zürich
- SCHULLA, J., JASPER, K. (2009): Model description WaSiM-ETH. http://www.wasim.ch/ downloads/doku/wasim/interpolation_meteodata_2009_en.pdf (Abruf am 1.12.2010)
- SCHULTZE B., C. KÖLLING, C. DITTMAR, T. RÖTZER, W. ELLING (2005): Konzept für ein neues quantitatives Verfahren zur Kennzeichnung des Wasserhaushalts von Waldböden in Bayern: Modellierung - Regression - Regionalisierung; Forstarchiv 76, S. 155-163
- SCHULTZE, B. (1998): Optimierung der Messung bodenhydraulischer Eigenschaften durch inverse Simulation von Ausfluß und Rückflußexperimenten an Bodensäulen; Bayreuther Forum Ökologie, Band 60
- SCHULTZE, B., SCHERZER, J. (2011): ForeStClim Modellierung des Wasserhaushalts von 202 Waldstandorten bei Klimawandel. Abschlussbericht an die Forschungsanstalt für Waldökologie und Forstwirtschaft Rheinland-Pfalz, ca. 80 Seiten. In Vorbereitung
- Sметникst, P. (2010): Forest fertilization: Trends in knowledge and practice compared to agriculture. Plant and Soil, 335, S. 83-100
- Soroosнian, S. Q. D., Gupta, V. K. (1993): Calibration of rainfall-runoff models: Application of global optimization to the Sacramento Soil Moisture Accounting Model; Water Resources Research 29, 1185-1194
- Stark, H., Nothdurft, A., Bauhus, J. (2011): Effekte von Vorwäldern auf den Nährstoff- und Kohlenstoffhaushalt des Waldbodens. AFZ-Der Wald, 66 *(14)*, 4-6
- Тіктак, А., van Grinsven, H.J.M. (1995): Review of sixteen forest-soil-atmosphere-models; Ecological modelling 85, 35 - 53
- Ulrich, B. (1981): Theoretische Betrachtungen des Ionenkreislaufs in Waldökosystemen; Z. Pflanzenernährung Bodenk. 144, 289 - 305
- ULRICH, B. (1989): Effects of acid precipitation on forest ecosystems in Europe; in Adriano, D. C., Johnson, A. H. (Hrsg): Acid precipitation, Vol. 2: Biological and ecological Effects; Springer, New York, 189 272
- Ulrich, B. (1991): Folgerungen aus 10 Jahren Waldökosystem- und Waldschadensforschung. Forst und Holz, 46, 3-12
- UNSELD, R., WENZEL, M., WEICH, T., STARK, H., WEINREICH, A., BAUHUS, J. (2010): Alternative Bewirtschaftungsformen zur Steigerung der energetisch nutzbaren Biomasse in Wald. FUH, 65 *(10)*, 14-17
- VAN GENUCHTEN, M. T. (1980): A closed-form equation for predicting the hydraulic conductivity of unsaturated soils; Soil Sci. Soc. Am. J., 44, 892 898
- VAN GENUCHTEN, M. T., LEIJ, F. J., YATES, S. R. (1991): The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils; EPA-Report 600/2-91/065, U. S. Environmental Protection Agency; ADA, Oklahoma
- VOGEL, T., HUANG, K., ZHANG, R., VAN GENUCHTEN, M. T. (1996): The HYDRUS Code for Simulating One-Dimensional Water Flow, Solute Transport, and Heat Movement in Variably-Saturated Media; Research Report No. 140; U. S. Salinity Laboratory, Agricultural Research Service, U. S. Department of Agriculture; Riverside, California
- WARRICK, A. W., MYERS, D. E., NIELSON, D. R. (1986): Geostatistical methods applied to soil science. In: Klute, A. (Hrsg.): Methods of soil analysis. Vol. 1: Physical and Mineralogical Methods, 2nd Ed., Agronomy series 9(1), American Society of Agronomy, Madison, Wisconsin
- WEICH, T., UNSELD, R. (2011): Erntetechniken im Energie-Vorwald und Konsequenzen für den Waldbau. AFZ-Der Wald, 66 (5), 20-23
- WEIHE, J. (1974): Benetzung und Interzeption von Buchen- und Fichtenbeständen in Nordrhein-Westfalen. Allgemeine Forst- und Jagdzeitung, 145, 1-11
- WEISDORFER, M. (1999): Einfluß unterschiedlicher Schwefel- und Staubimmissionen in der Vergangenheit auf die chemische Entwicklung von Humusauflagen und Mineralböden in Kiefernwaldökosystemen im Nordostdeutschen Tiefland; Cottbuser Schriften zu Bodenschutz und Rekultivierung, Band 4
- WHITMORE, A. P. (1991): A method for assessing the goodness of computer simulation of soil processes; Journal of Soil Science 42, 289 299
- WILSON, G. V., ALFONSI, J. M., JARDINE, J. M. (1989): Spatial variability of saturated hydraulic conductivity of the subsoil of two forested watersheds. Soil Sci. Soc. Am. J. 53, 679 685
- WÖSTEN, J. H., M., LILLY, A., NEMES, A., LE BA, C. (1999): Development and use of a database of hydraulic properties of European soils. Geoderma 90, 169-185
- ZIMMERMANN, L. (1995): Der Bodenwasserhaushalt an einem Hochlagenstandort im Schwarzwald; Freiburger Bodenkundl. Abhandlungen, Bd. 35

9 Abbildungsverzeichnis

Abbildung 1:	Adenau Level II, gemessene und simulierte Bodensaugspannung Adenau Level II, measured and simulated soil water suction	25
Abbildung 2:	Adenau Level II, Bilanzkomponenten des Wasserhaushalts Adenau Level II, components of the water balance	26
Abbildung 3:	Adenau Level II, simulierter Bodenwasservorrat im Wurzelbereich Adenau Level II, simulated soil water storage in the rooting zone	27
Abbildung 4:	Adenau Level II, simulierte Bodenwasserverfügbarkeit im Wurzelraum und Wasserstressindikatoren Adenau Level II, simulated soil water availability in the rooting zone and water stress indicators	27
Abbildung 5:	Adenau Level II, relativer Luftgehalt pro Porenvolumen im Oberboden Adenau Level II, relative air content per pore volume in top soil	28
Abbildung 6:	Merzalben Level II, gemessene und simulierte Bodensaugspannung Merzalben Level II, measured and simulated soil water suction	33
Abbildung 7:	Merzalben Level II, gemessener und simulierter Bodenwassergehalt Merzalben Level II, measured and simulated soil water content	34
Abbildung 8:	Merzalben Level II, gemessene und simulierte Bodentemperatur. Merzalben Level II, measured and simulated soil temperature	35
Abbildung 9:	Merzalben Level II, Bilanzkomponenten des Wasserhaushalts Merzalben Level II, components of the water balance	37
Abbildung 10:	Merzalben Level II, gemessener und simulierter Bodenwasservorrat Merzalben Level II, measured and simulated soil water storage	38
Abbildung 11:	Merzalben Level II, simulierter Bodenwasservorrat im Wurzelbereich Merzalben Level II, simulated soil water storage in the rooting zone	38
Abbildung 12:	Merzalben Level II, simulierte Bodenwasserverfügbarkeit im Wurzelraum und Wasserstressindikatoren Merzalben Level II, simulated soil water availability in the rooting zone and water stress indicators	39
Abbildung 13:	Merzalben Level II, relativer Luftgehalt pro Porenvolumen im Oberboden Merzalben Level II, relative air content per pore volume in top soil	39
Abbildung 14:	Hermeskeil Level II, gemessene und simulierte Bodensaugspannung Hermeskeil Level II, measured and simulated soil water suction	45
Abbildung 15:	Hermeskeil Level II, Bilanzkomponenten des Wasserhaushalts Hermeskeil Level II, components of the water balance	46
Abbildung 16:	Hermeskeil Level II, simulierter Bodenwasservorrat im Wurzelbereich Hermeskeil Level II, simulated soil water storage in the rooting zone	47
Abbildung 17:	Hermeskeil Level II, simulierte Bodenwasserverfügbarkeit im Wurzelraum und Wasserstressindikatorer Hermeskeil Level II, simulated soil water availability in the rooting zone and water stress indicators	ו 47
Abbildung 18:	Hermeskeil Level II, relativer Luftgehalt pro Porenvolumen im Oberboden Hermeskeil Level II, relative air content per pore volume in top soil	48
Abbildung 19:	Johanniskreuz Level II, gemessene und simulierte Bodensaugspannung Johanniskreuz Level II, measured and simulated soil water suction	51
Abbildung 20:	Johanniskreuz Level II, gemessene und simulierte Bodentemperatur Johanniskreuz Level II, measured and simulated soil temperature	51
Abbildung 21:	Johanniskreuz Level II, Bilanzkomponenten des Wasserhaushalts Johanniskreuz Level II, components of the water balance	53
Abbildung 22:	Johanniskreuz Level II, simulierter Bodenwasservorrat im Wurzelbereich Johanniskreuz Level II, simulated soil water storage in the rooting zone	54
Abbildung 23:	Johanniskreuz Level II, simulierte Bodenwasserverfügbarkeit im Wurzelraum und Wasserstressindikato Johanniskreuz Level II, simulated soil water availability in the rooting zone and water stress indicators	ren 54
Abbildung 24:	Johanniskreuz Level II, relativer Luftgehalt pro Porenvolumen im Oberboden Johanniskreuz Level II, relative air content per pore volume in top soil	55
Abbildung 25:	Kirchheimbolanden Level II, simulierte Bodensaugspannung Kirchheimbolanden Level II, simulated suction	61
Abbildung 26:	Kirchheimbolanden Level II, Bilanzkomponenten des Wasserhaushalts Kirchheimbolanden Level II, components of the water balance	63
Abbildung 27:	Kirchheimbolanden Level II, simulierter Bodenwasservorrat im Wurzelbereich Kirchheimbolanden Level II, simulated soil water storage in the rooting zone	64

Abbildung 28:	Kirchheimbolanden Level II, simulierte Bodenwasserverfügbarkeit im Wurzelraum und Wasserstressindikatoren Kirchheimbolanden Level II, simulated soil water availability in the rooting zone and water stress indicators	.64
Abbildung 29:	Kirchheimbolanden Level II, relativer Luftgehalt pro Porenvolumen im Oberboden Kirchheimbolanden Level II, relative air content per pore volume in top soil	.65
Abbildung 30:	Neuhäusel-Bims Level II, gemessene und simulierte Bodensaugspannung (stammfern) Neuhäusel-Bims Level II, measured and simulated soil water suction (in a distance of the trees)	.69
Abbildung 31:	Neuhäusel-Bims Level II, gemessene und simulierte Bodensaugspannung (stammnah) Neuhäusel-Bims Level II, measured and simulated soil water suction (close to the trees)	.70
Abbildung 32:	Neuhäusel-Bims Level II, Bilanzkomponenten des Wasserhaushalts (stammfern) Neuhäusel-Bims Level II, components of the water balance (in a distance of the trees)	.72
Abbildung 33:	Neuhäusel-Bims Level II, Bilanzkomponenten des Wasserhaushalts (stammnah) Neuhäusel-Bims Level II, components of the water balance (close to the trees)	74
Abbildung 34:	Neuhäusel-Bims Level II, Bilanzkomponenten des Wasserhaushalts (Gesamtfläche) Neuhäusel-Bims Level II, components of the water balance (total area)	.76
Abbildung 35:	Neuhäusel-Bims Level II, simulierter Bodenwasservorrat im Wurzelbereich (stammfern) Neuhäusel-Bims Level II, simulated soil water storage in the rooting zone (in a distance of the trees)	77
Abbildung 36:	NeuhäuselBims Level II, simulierte Bodenwasserverfügbarkeit und Wasserstressindikatoren stammfern Neuhäusel-Bims Level II, sim soil water availability and water stress indicators (in a distance of the trees)	.77
Abbildung 37:	Neuhäusel-Bims Level II, simulierter Luftgehalt pro Porenvolumen in den oberen 30 cm (AIR30) als Indikator für Sauerstoffmangel im Wurzelraum (stammfern) Neuhäusel-Bims Level II, simulated air content per specific pore volume of the upper 30 cm (AIR30) as indicator of oxygen deficit in the rooting zone (in a distance of the trees)	78
Abbildung 38:	Neuhäusel-Quarzit Level II, gemessene und simulierte Bodensaugspannung (stammfern) Neuhäusel-Quarzit Level II, measured and simulated soil water suction (in a distance of the trees)	. 81
Abbildung 39:	Neuhäusel-Quarzit Level II, gemessene und simulierte Bodensaugspannung (stammnah) Neuhäusel-Quarzit Level II, measured and simulated soil water suction (close to the trees)	.82
Abbildung 40:	Neuhäusel-Quarzit Level II, Bilanzkomponenten des Wasserhaushalts (stammfern) Neuhäusel-Quarzit Level II, components of the water balance (in a distance of the trees)	.83
Abbildung 41:	Neuhäusel-Quarzit Level II, Bilanzkomponenten des Wasserhaushalts (stammnah) Neuhäusel-Quarzit Level II, components of the water balance (close to the trees)	.85
Abbildung 42:	Neuhäusel-Quarzit Level II, Bilanzkomponenten des Wasserhaushalts (Gesamtfläche) Neuhäusel-Quarzit Level II, relative amounts (total area)	. 87
Abbildung 43:	Neuhäusel-Quarzit Level II, simulierter Bodenwasservorrat im Wurzelbereich (stammfern) Neuhäusel-Quarzit Level II, simulated soil water storage in the rooting zone (in a distance of the trees)	.88
Abbildung 44:	Neuhäusel-Quarzit Level II, simulierte Bodenwasserverfügbarkeit und Wasserstressindikatoren (stammfern) Neuhäusel-Quarzit Level II, simulated soil water availability and water stress indicators (in a distance of the trees)	.88
Abbildung 45:	Neuhäusel-Quarzit Level II, simulierter Luftgehalt pro Porenvolumen in den oberen 30 cm (AIR30) als Indikator für Sauerstoffmangel im Wurzelraum (stammfern) Neuhäusel-Quarzit Level II, simulated air content per specific pore volume of the upper 30 cm (AIR30) as indicator of oxygen deficit in the rooting zone (in a distance of the trees)	.89
Abbildung 46:	Leisel Level II, gemessene und simulierte Bodensaugspannung (2000 - 2005) Leisel Level II, measured and simulated soil water suction (2000 - 2005)	.93
Abbildung 47:	Leisel Level II, gemessene und simulierte Bodensaugspannung (2005 - 2009 Leisel Level II, measured and simulated soil water suction (2005 - 2009)	94
Abbildung 48:	Leisel Level II, gemessener und simulierter Bodenwassergehalt Leisel Level II, measured and simulated soil water content	95
Abbildung 49:	Leisel Level II, gemessene und simulierte Bodentemperatur Leisel Level II, measured and simulated soil temperature	.96
Abbildung 50:	Leisel Level II, Bilanzkomponenten des Wasserhaushalts Leisel Level II, components of the water balance	.98
Abbildung 51:	Leisel Level II, simulierter Bodenwasservorrat im Wurzelbereich Leisel Level II, simulated soil water storage in the rooting zone	99
Abbildung 52:	Leisel Level II, gemessener und simulierter Bodenwasservorrat Leisel Level II, measured and simulated soil water storage	.99

Abbildung 53:	Leisel Level II, simulierte Bodenwasserverfügbarkeit im Wurzelraum und Wasserstressindikatoren Leisel Level II, simulated soil water availability in the rooting zone and water stress indicators	100
Abbildung 54:	Leisel Level II, relativer Luftgehalt pro Porenvolumen im Oberboden (0-30 cm Tiefe) Leisel Level II, relative air content per pore volume in top soil (0 – 30 cm depth)	100
Abbildung 55:	Schaidt Level II, gemessene und simulierte Bodensaugspannung Schaidt Level II, measured and simulated soil water suction	106
Abbildung 56:	Schaidt Level II, gemessener und simulierter Grundwasserspiegel Schaidt Level II, measured and simulated groundwater table	106
Abbildung 57:	Schaidt Level II, Bilanzkomponenten des Wasserhaushalts Schaidt Level II, components of the water balance	108
Abbildung 58:	Schaidt Level II, simulierter Bodenwasservervorrat im Wurzelbereich Schaidt Level II, simulated soil water storage in the rooting zone	109
Abbildung 59:	Schaidt Level II, simulierte Bodenwasserverfügbarkeit im Wurzelraum und Wasserstressindikatoren Schaidt Level II, simulated soil water availability in the rooting zone and water stress indicators	109
Abbildung 60:	Schaidt Level II, relativer Luftgehalt pro Porenvolumen im Oberboden (0 - 30 cm Tiefe) Schaidt Level II, relative air content per pore volume in top soil (0 – 30 cm depth)	110
Abbildung 61:	Hochspeyer Kompensationsversuch, gemessener und simulierter Bodenwassergehalt Hochspeyer compensation experiment, measured and simulated soil water content	117
Abbildung 62:	Hochspeyer Kompensationsversuch, gemessene und simulierte Bodentemperatur Hochspeyer compensation experiment, measured and simulated soil temperature	118
Abbildung 63:	Hochspeyer Compensation experiment, measured and simulated out compensation experiment, measured and simulated out compensation experiment.	120
Abbildung 64:	Birkenfeld Kompensation experiment, components of the water butance and a simulated soil water content.	124
Abbildung 65:	Birkenfeld Kompensation experiment, measured and simulated soil water content managements and a simulated soil temperature Birkenfeld compensation experiment, measured and simulated soil temperature	125
Abbildung 66:	Birkenfeld Kompensation experiment, measured and simulated sold temperature managements of the water balance.	127
Abbildung 67:	Adenau Kompensation experiment, gemessener und simulierter Bodenwassergehalt Adenau compensation experiment, measured and simulated soil water content	131
Abbildung 68:	Adenau Kompensationsversuch, gemessene und simulierte Bodentemperatur Adenau compensation experiment, measured and simulated soil temperature	132
Abbildung 69:	Adenau Kompensationsversuch, Bilanzkomponenten des Wasserhaushalts Adenau ompensation experiment, components of the water balance	134
Abbildung 70:	Gauchsberg simulierter Blattflächenindex (alle Versuchsvarianten) Gauchsberg simulated Leaf Area Index (all plots)	141
Abbildung 71:	Gauchsberg simulierte und gemessene Bestandeshöhe (alle Versuchsvarianten) Gauchsberg simulated and measured canopy hight (all plots)	142
Abbildung 72:	Gauchsberg Fichtenaltbestand (Parzellen 5103, 5104), gemessene und simulierte Bodensaugspannung Gauchsberg Norway spruce mature stand (parcels 5103, 5104), measured and simulated soil water suction	g 143
Abbildung 73:	Gauchsberg Fichtenaltbestand (Parzellen 5103, 5104), Bilanzkomponenten des Wasserhaushalts Gauchsberg Norway spruce mature stand (parcels 5103, 5104), components of the water balance	145
Abbildung 74:	Gauchsberg Eichenaltbestand (Parzellen 5503, 5504), gemessener und simulierter Bodenwassergehal Gauchsberg oak mature stand (parcels 5503, 5504), measured and simulated soil water content	lt 148
Abbildung 75:	Gauchsberg Eichenaltbestand (Parzellen 5503, 5504), Bilanzkomponenten des Wasserhaushalts Gauchsberg oak mature stand (parcels 5503, 5504), components of the water balance	150
Abbildung 76:	Gauchsberg Eichenaltbestand (Parzellen 5503, 5504), gemessener und simulierter Bodenwasservorra Gauchsberg oak mature stand (parcels 5503, 5504) measured and simulated soil water storrage	t 151
Abbildung 77:	Gauchsberg Null-/Freifläche (Parzelle 5003), gemessene und simulierte Bodensaugspannung Gauchsberg open area (parcel 5003), measured and simulated soil water suction	153
Abbildung 78:	Gauchsberg Null-/Freifläche (Parzelle 5004), gemessene und simulierte Bodensaugspannung Gauchsberg open area (parcel 5004), measured and simulated soil water suction	154
Abbildung 79:	Gauchsberg Null-/Freifläche (Parzelle 5003), Bilanzkomponenten des Wasserhaushalts Gauchsberg open area (parcel 5003), components of the water balance	156
Abbildung 80:	Gauchsberg Null-/Freifläche (Parzelle 5004), Bilanzkomponenten des Wasserhaushalts Gauchsberg open area (parcel 5004), components of the water balance	158

Abbildung 81:	Gauchsberg Sukzessionsvariante (Parzelle 5203), gemessene und simulierte Bodensaugspannung Gauchsberg succession (parcel 5203), measured and simulated soil water suction	.160
Abbildung 82:	Gauchsberg Sukzessionsvariante (Parzelle 5204), gemessene und simulierte Bodensaugspannung Gauchsberg succession (parcel 5203), measured and simulated soil water suction	161
Abbildung 83:	Gauchsberg Sukzessionsvariante (Parzelle 5203), Bilanzkomponenten des Wasserhaushalts Gauchsberg succession (parcel 5203), components of the water balance	. 163
Abbildung 84:	Gauchsberg Sukzessionsvariante (Parzelle 5204), Bilanzkomponenten des Wasserhaushalts Gauchsberg succession (parcel 5204), components of the water balance	. 165
Abbildung 85:	Gauchsberg Traubeneiche (Parzelle 5303), gemessene und simulierte Bodensaugspannung Gauchsberg Sessile oak (parcel 5303), measured and simulated soil water suction	. 167
Abbildung 86:	Gauchsberg Traubeneiche (Parzelle 5304), gemessene und simulierte Bodensaugspannung Gauchsberg Sessile oak (parcel 5304), measured and simulated soil water suction	.168
Abbildung 87:	Gauchsberg Traubeneiche (Parzelle 5303), Bilanzkomonenten des Wasserhaushalts Gauchsberg Sessile oak (parcel 5303), components of the water balance	. 170
Abbildung 88:	Gauchsberg Traubeneiche (Parzelle 5304), Bilanzkomponenten des Wasserhaushalts Gauchsberg Sessile oak (parcel 5304), components of the water balance	172
Abbildung 89:	Gauchsberg Birke (Parzelle 5403), gemessene und simulierte Bodensaugspannung Gauchsberg birch (parcel 5403), measured and simulated soil water suction	174
Abbildung 90:	Gauchsberg Birke (Parzelle 5404), gemessene und simulierte Bodensaugspannung Gauchsberg birch (parcel 5404), measured and simulated soil water suction	. 175
Abbildung 91:	Gauchsberg Birke (Parzelle 5403), Bilanzkomponenten des Wasserhaushalts Gauchsberg birch (parcel 5403), components of the water balance	177
Abbildung 92:	Gauchsberg Birke (Parzelle 5404), Bilanzkomponenten des Wasserhaushalts Gauchsberg birch (parcel 5404), components of the water balance	. 179
Abbildung 93:	Kirchberg simulierter Blattflächenindex (alle Versuchsvarianten) Kirchberg simulated Leaf Area Index (all plots)	. 183
Abbildung 94:	Kirchberg simulierte und gemessene Bestandeshöhe (alle Versuchsvarianten) Kirchberg simulated and measured canopy hight (all plots)	
Abbildung 95:	Kirchberg Fichtenaltbestand (Parzellen 5103, 5104), gemessene und simulierte Bodensaugspannung Kirchberg Norway spruce mature stand (parcels 5103, 5104), measured and simulated soil water suction	185
Abbildung 96:	Kirchberg Fichtenaltbestand (Parzellen 5103, 5104), gemessener und simulierter Bodenwassergehalt <i>Kirchberg Norway spruce mature stand (parcels 5103, 5104), measured and simulated soil</i> <i>water content</i>	. 186
Abbildung 97:	Kirchberg Fichtenaltbestand (Parzellen 5103, 5104), Bilanzkomponenten des Wasserhaushalts Kirchberg Norway spruce mature stand (parcels 5103, 5104), components of the water balance	. 188
Abbildung 98:	Kirchberg Fichtenaltbestand (Parzellen 5103, 5104), simulierter und gemessener Bodenwasservorrat Kirchberg Norway spruce mature stand (parcels 5103, 5104), simulated and measured water storage	. 189
Abbildung 99:	Kirchberg Eichenaltbestand (Parzellen 5503, 5504), gemessener und simulierter Bodenwassergehalt Kirchberg oak mature stand (parcels 5503, 5504), measured and simulated soil water content	. 192
Abbildung 100:	Kirchberg Eichenaltbestand (Parzellen 5503, 5504), Bilanzkomponenten des Wasserhaushalts Kirchberg oak mature stand (parcels 5503, 5504), components of the water balance	. 194
Abbildung 101:	Kirchberg Eichenaltbestand (Parzellen 5503, 5504), simulierter und gemessener Bodenwasservorrat	195
Abbildung 102:	Kirchberg Null-/Freiflächen (Parzellen 5003, 5004), gemessene und simulierte Bodensaugspannung Kirchberg open area (parcels 5003, 5004), measured and simulated soil water suction	197
Abbildung 103:	Kirchberg Null-/Freiflächen (Parzellen 5003, 5004), gemessener und simulated soit water content Kirchberg null-/Freiflächen (Parzellen 5003, 5004), gemessener und simulated soit water content	. 198
Abbildung 104:	Kirchberg Null-/Freiflächen (Parzellen 5003, 5004), Bilanzkomponenten des Wasserhaushalts Kirchberg open area (parcels 5003, 5004), components of the water balance	200
Abbildung 105:	Kirchberg Null-/Freiflächen (Parzellen 5003, 5004), simularter und gemessener Bodenwasservorrat Kirchberg open area (parcels 5003, 5004), simulated and measured water storage	.201
Abbildung 106:	Kirchberg Sukzessionsvariante (Parzelle 5203), gemessene und simulierte Bodensaugspannung Kirchberg succession (parcel 5203), measured and simulated soil water suction	.203
Abbildung 107:	Kirchberg, Sukzessionsvariante (Parzelle 5204), gemessene und simulierte Bodensaugspannung Kirchberg, succession (parcel 5204), measured and simulated soil water suction	204

Abbildung 108:	Kirchberg Sukzessionsvariante (Parzelle 5203), gemessener und simulierter Bodenwassergehalt Kirchberg succession (parcel 5203), measured and simulated soil water content	205
Abbildung 109:	Kirchberg Sukzessionsvariante (Parzelle 5204), gemessener und simulierter Bodenwassergehalt Kirchberg succession (parcel 5204), measured and simulated soil water content	206
Abbildung 110:	Kirchberg Sukzessionsvariante (Parzelle 5203), Bilanzkomponenten des Wasserhaushalts Kirchberg succession (parcel 5203), components of the water balance	208
Abbildung 111:	Kirchberg Sukzessionsvariante (Parzelle 5204), Bilanzkomponenten des Wasserhaushalts Kirchberg succession (parcel 5204), components of the water balance	210
Abbildung 112:	Kirchberg Sukzessionsvariante (Parzelle 5203), simulierter und gemessener Bodenwasservorrat Kirchberg succession (parcel 5203) simulated and measured water storage	211
Abbildung 113:	Kirchberg Sukzessionsvariante (Parzelle 5204), simulierter und gemessener Bodenwasservorrat Kirchberg succession (parcel 5204), simulated and measured water storage	211
Abbildung 114:	Kirchberg Stieleiche (Parzellen 5303, 5304), gemessene und simulierte Bodensaugspannung Kirchberg oak (parcels 5303, 5304), measured and simulated soil water suction	213
Abbildung 115:	Kirchberg Stieleiche (Parzellen 5303, 5304), gemessener und simulierter Bodenwassergehalt Kirchberg oak (parcels 5303, 5304), measured and simulated soil water content	214
Abbildung 116:	Kirchberg Stieleiche (Parzellen 5303, 5304), Bilanzkomponenten des Wasserhaushalts Kirchberg oak (parcels 5303, 5304), components of the water balance	216
Abbildung 117:	Kirchberg Stieleiche (Parzellen 5303, 5304), simulierter und gemessener Bodenwasservorrat Kirchberg oak (parcels 5303, 5304), simulated and measured water storage	217
Abbildung 118:	Kirchberg Roterle (Parzellen 5403, 5404), gemessene und simulated soil water suction	219
Abbildung 119:	Kirchberg Roterle (Parzellen 5403, 5404), gemessener und simulierter Bodenwassergehalt Kirchberg red alder (parcels 5403, 5404), measured and simulated soil water content	220
Abbildung 120:	Kirchberg Roterle (Parzellen 5403, 5404), Bilanzkomponenten des Wasserhaushalts Kirchberg red alder (parcels 5403, 5404), components of the water balance	
Abbildung 121:	Kirchberg Roterle (Parzellen 5403, 5404), simulierter und gemessener Bodenwasservorrat Kirchberg red alder (parcels 5403, 5404), simulated and measured water storage	223
Abbildung 122:	Kisselbach III Kahllagenversuch, simulierte Bestandeshöhe, Blattflächenindex und Wuzeltiefe Kisselbach III clear cutting experiment, simulated canopy hight, Leaf Area Index and root depth	
Abbildung 123:	Kisselbach III Kahllagenversuch, gemessene und simulierte Bodensaugspannung (1) Kisselbach III clear cutting experiment, measured and simulated soil water suction (1)	229
Abbildung 124:	Kisselbach III Kahllagenversuch, gemessene und simulierte Bodensaugspannung (2) Kisselbach III clear cutting experiment, measured and simulated soil water suction (2)	230
Abbildung 125:	Kisselbach III Kahllagenversuch, Bilanzkomponenten des Wasserhaushalts Kisselbach III clear cutting experiment, components of the water balance	232
Abbildung 126:	Kisselbach IX Kahllagenversuch, simulierte Bestandeshöhe, Blattflächenindex und Wurzeltiefe Kisselbach IX clear cutting experiment, simulated canopy hight, Leaf Area Index and root depth	236
Abbildung 127:	Kisselbach IX Kahllagenversuch, gemessene und simulierte Bodensaugspannung Kisselbach IX clear cutting experiment, measured and simulated soil water suction	238
Abbildung 128:	Kisselbach IX Kahllagenversuch, Bilanzkomponenten des Wasserhaushalts Kisselbach IX clear cutting experiment, components of the water balance	240
Abbildung 129:	Laubach VII Kahllagenversuch, simulierte Kronenhöhe, Blattflächenindex und Wurzeltiefe Laubach VII clear cutting experiment, simulated canopy hight, Leaf Area Index and root depth	243
Abbildung 130:	Laubach VII Kahllagenversuch, gemessene und simulierte Bodensaugspannung (1) Laubach VII clear cutting experiment, measured and simulated soil water suction (1)	245
Abbildung 131:	Laubach VII Kahllagenversuch, gemessene und simulierte Bodensaugspannung (2) Laubach VII clear cutting experiment, measured and simulated soil water suction (2)	246
Abbildung 132:	Laubach VII Kahllagenversuch, Bilanzkomponenten des Wasserhaushalts Laubach VII clear cutting experiment, components of the water balance	248
Abbildung 133:	Bilanzkomponenten des Wasserhaushalts (G.: Gauchsberg, K.: Kirchberg) Components of the water balance (G.: Gauchsberg, K.: Kirchberg)	253
Abbildung 134:	Klimatische Einflussfaktoren auf den Wasserhaushalt	254
Abbildung 135:	Einfluss von Baumart und nFK auf den Wasserhaushalt	255

10 Tabellenverzeichnis

Tabelle 1:	Tiefensickerung nach Baumart und Bestandesalter geordnet Deep percolation, sorted according to the tree species and age	6
Tabelle 2:	Adenau Level II, Datengrundlage Meteorologie und Bodenhydrologie Adenau Level II, data basis meteorology and soil hydrology	21
Tabelle 3:	Adenau Level II, meteorologische Daten Adenau Level II, meteorologic data	22
Tabelle 4:	Adenau Level II, Modellparameter Boden Adenau Level II, model parameters soil	23
Tabelle 5:	Adenau Level II, Modellparameter Vegetation Adenau Level II, model parameters vegetation	23
Tabelle 6:	Adenau Level II, FAO-Referenzverdunstung und klimatische Wasserbilanz Adenau Level II, FAO reference evapotranspiration and climatic water balance	24
Tabelle 7:	Adenau Level II, Bilanzkomponenten des Wasserhaushalts Adenau Level II, components of the water balance	25
Tabelle 8:	Merzalben Level II, Datengrundlage, Meteorologie und Bodenhydrologie Merzalben Level II, data basis meteorology and soil hydrology	
Tabelle 9:	Merzalben Level II, meteorologische Daten Merzalben Level II, meteorologic data	
Tabelle 10:	Merzalben Level II, Modellparameter Boden Merzalben Level II, model parameters soil	31
Tabelle 11:	Merzalben Level II, Modellparameter Vegetation Merzalben Level II, model parameters vegetation	
Tabelle 12:	Merzalben Level II, FAO-Referenzverdunstung und klimatische Wasserbilanz Merzalben Level II, FAO reference evapotranspiration and climatic water balance	
Tabelle 13:	Merzalben Level II, Bilanzkomponenten des Wasserhaushalts Merzalben Level II, components of the water balance	
Tabelle 14:	Hermeskeil Level II, Datengrundlage, Meteorologie und Bodenhydrologie Hermeskeil Level II, data basis meteorology and soil hydrology	41
Tabelle 15:	Hermeskeil Level II, meteorologische Daten Hermeskeil Level II, meteorologic data	42
Tabelle 16:	Hermeskeil Level II, Modellparameter Boden Hermeskeil Level II, model parameters soil	43
Tabelle 17:	Hermeskeil Level II, Modellparameter Vegetation Hermeskeil Level II, model parameters vegetation	43
Tabelle 18:	Hermeskeil Level II, FAO-Referenzverdunstung und klimatische Wasserbilanz Hermeskeil Level II, FAO reference evapotranspiration and climatic water balance	44
Tabelle 19:	Hermeskeil Level II, Bilanzkomponenten des Wasserhaushalts Hermeskeil Level II, components of the water balance	45
Tabelle 20:	Johanniskreuz Level II, Datengrundlage, Bodenhydrologie Johanniskreuz Level II, soil hydrologic data	
Tabelle 21:	Johanniskreuz Level II, Modellparameter Boden Johanniskreuz Level II, model parameters soil	
Tabelle 22:	Johanniskreuz Level II, Modellparameter Vegetation Johanniskreuz Level II, model parameters vegetation	
Tabelle 23:	Johanniskreuz Level II, Bilanzkomponenten des Wasserhaushalts Johanniskreuz Level II, components of the water balance	
Tabelle 24:	Kirchheimbolanden Level II, Datengrundlage, Meteorologie und Bodenhydrologie Kirchheimbolanden Level II, data basis meteorology and soil hydrology	
Tabelle 25:	Kirchheimbolanden Level II, meteorologische Daten Kirchheimbolanden Level II, meteorologic data	
Tabelle 26:	Kirchheimbolanden Level II, Modellparameter Boden Kirchheimbolanden Level II, model parameters soil	
Tabelle 27:	, Kirchheimbolanden Level II, Modellparameter Vegetation Kirchheimbolanden Level II, model parameters vegetation	

Tabelle 28:	Kirchheimbolanden Level II, FAO-Referenzverdunstung und klimatische Wasserbilanz Kirchheimbolanden Level II, FAO reference evapotranspiration and climatic water balance	60
Tabelle 29:	Kirchheimbolanden Level II, Bilanzkomponenten des Wasserhaushalts Kirchheimbolanden Level II, components of the water balance	62
Tabelle 30:	Neuhäusel-Bims Level II, Datengrundlage, Meteorologie und Bodenhydrologie Neuhäusel-Bims Level II, data basis meteorology and soil hydrology	66
Tabelle 31:	Neuhäusel-Bims Level II, meteorologische Daten Neuhäusel-Bims Level II, meteorologic data	67
Tabelle 32:	Neuhäusel-Bims Level II, Modellparameter Boden Neuhäusel-Bims Level II, model parameters soil	67
Tabelle 33:	Neuhäusel-Bims Level II, Modellparameter Vegetation Neuhäusel-Bims Level II, model parameters vegetation	68
Tabelle 34:	Neuhäusel-Bims Level II, FAO-Referenzverdunstung und klimatische Wasserbilanz Neuhäusel-Bims Level II, FAO reference evapotranspiration and climatic water balance	68
Tabelle 35:	Neuhäusel-Bims Level II, Bilanzkomponenten des Wasserhaushalts (stammfern) Neuhäusel-Bims Level II, components of the water balance (in a distance of the trees)	71
Tabelle 36:	Neuhäusel-Bims Level II, Bilanzkomponenten des Wasserhaushalts (stammnah) Neuhäusel-Bims Level II, components of the water balance (close to the trees)	73
Tabelle 37:	Neuhäusel-Bims Level II, Bilanzkomponenten des Wasserhaushalts (Gesamtfläche) Neuhäusel-Bims Level II, components of the water balance (total area)	75
Tabelle 38:	Neuhäusel-Quarzit Level II, Datengrundlage, Meteorologie und Bodenhydrologie Neuhäusel-Quarzit Level II, data basis meteorology and soil hydrology	80
Tabelle 39:	Neuhäusel-Quarzit Level II, Modellparameter Boden Neuhäusel-Quarzit Level II, model parameters soil	81
Tabelle 40:	Neuhäusel-Quarzit Level II, Modellparameter Vegetation Neuhäusel-Quarzit Level II, model parameters vegetation	81
Tabelle 41:	Neuhäusel-Quarzit Level II, Bilanzkomponenten des Wasserhaushalts (stammfern) Neuhäusel-Quarzit Level II, components of the water balance (in a distance of the trees)	82
Tabelle 42:	Neuhäusel-Quarzit Level II, Bilanzkomponenten des Wasserhaushalts (stammnah) Neuhäusel-Quarzit Level II, components of the water balance (close to the trees)	84
Tabelle 43:	Neuhäusel-Quarzit Level II, Bilanzkomponenten des Wasserhaushalts (Gesamtfläche) Neuhäusel-Quarzit Level II, components of the water balance (total area)	
Tabelle 44:	Leisel Level II, Datengrundlage, Meteorologie und Bodenhydrologie Leisel Level II, data basis meteorology and soil hydrology	90
Tabelle 45:	Leisel Level II, meteorologische Daten Leisel Level II, meteorologic data	91
Tabelle 46:	Leisel Level II, Modellparameter Boden Leisel Level II, model parameters soil	91
Tabelle 47:	Leisel Level II, Modellparameter Vegetation Leisel Level II, model parameters vegetation	92
Tabelle 48:	Leisel Level II, FAO-Referenzverdunstung und klimatische Wasserbilanz Leisel Level II, FAO reference evapotranspiration and climatic water balance	92
Tabelle 49:	Leisel Level II, Bilanzkomponenten des Wasserhaushalts Leisel Level II, components of the water balance	
Tabelle 50:	Schaidt Level II, Datengrundlage, Meteorologie und Bodenhydrologie Schaidt Level II, data basis meteorology and soil hydrology	102
Tabelle 51:	Schaidt Level II, meteorologische Daten Schaidt Level II, meteorologic data	
Tabelle 52:	Schaidt Level II, Modellparameter Boden Schaidt Level II, model parameters soil	103
Tabelle 53:	Schaidt Level II, Modellparameter Stauwasserabfluss Schaidt Level II, model parameters lateral drain	104
Tabelle 54:	Schaidt Level II, Modellparameter Vegetation Schaidt Level II, model parameters vegetation	104
Tabelle 55:	Schaidt Level II, FAO-Referenzverdunstung und klimatische Wasserbilanz Schaidt Level II, FAO reference evapotranspiration and climatic water balance	105

Tabelle 56:	Schaidt Level II, Bilanzkomponenten des Wasserhaushalts Schaidt Level II, components of the water balance	107
Tabelle 57:	Hochspeyer Kompensationsversuch, Datengrundlage, Meteorologie und Bodenhydrologie Hochspeyer compensation experiment, data basis meteorology and soil hydrology	114
Tabelle 58:	Hochspeyer Kompensationsversuch, meteorologische Daten Hochspeyer compensation experiment, meteorologic data	115
Tabelle 59:	Hochspeyer Kompensationsversuch, Modellparameter Boden Hochspeyer compensation experiment, model parameters soil	115
Tabelle 60:	Hochspeyer Kompensationsversuch, Modellparameter Vegetation Hochspeyer compensation experiment, model parameters vegetation	116
Tabelle 61:	Hochspeyer Kompensationsversuch, gemessene und simulierte Interzeption Hochspeyer compensation experiment, measured and simulated interception	116
Tabelle 62:	Hochspeyer Kompensationsversuch, Bilanzkomponenten des Wasserhaushalts Hochspeyer compensation experiment, components of the water balance	119
Tabelle 63:	Birkenfeld Kompensationsversuch, Datengrundlage, Meteorologie und Bodenhydrologie Birkenfeld compensation experiment, data basis meteorology and soil hydrology	122
Tabelle 64:	Birkenfeld Kompensationsversuch, Modellparameter Boden Birkenfeld compensation experiment, model parameters soil	122
Tabelle 65:	Birkenfeld Kompensationsversuch, Modellparameter Vegetation Birkenfeld compensation experiment, model parameters vegetation	123
Tabelle 66:	Birkenfeld Kompensationsversuch, gemessene und simulierte Interzeption Birkenfeld compensation experiment, measured and simulated interception	123
Tabelle 67:	Birkenfeld Kompensationsversuch, Bilanzkomponenten des Wasserhaushalts Birkenfeld compensation experiment, components of the water balance	126
Tabelle 68:	Adenau Kompensationsversuch, Datengrundlage, Meteorologie und Bodenhydrologie Adenau compensation experiment, data basis meteorology and soil hydrology	129
Tabelle 69:	Adenau Kompensationsversuch, Modellparameter Boden Adenau compensation experiment, model parameters soil	129
Tabelle 70:	Adenau Kompensationsversuch, Modellparameter Vegetation Adenau compensation experiment, model parameters vegetation	130
Tabelle 71:	Adenau Kompensationsversuch, gemessene und simulierte Interzeption Adenau compensation experiment, measured and simulated interception	130
Tabelle 72:	Adenau Kompensationsversuch, Bilanzkomponenten des Wasserhaushalts Adenau compensation experiment, components of the water balance	133
Tabelle 73:	Gauchsberg Datengrundlage Meteorologie Gauchsberg data basis meteorology	138
Tabelle 74:	Gauchsberg meteorologische Daten Gauchsberg meteorologic data	139
Tabelle 75:	Gauchsberg Fichtenaltbestand (Parzellen 5103, 5104), Datengrundlage Bodenhydrologie Gauchsberg Norway spruce mature stand (parcels 5103, 5104), soil hydrologic data	140
Tabelle 76:	Gauchsberg Fichtenaltbestand (Parzellen 5103, 5104), Modellparameter Boden Gauchsberg Norway spruce mature stand (parcels 5103, 5104), model parameters soil	140
Tabelle 77:	Gauchsberg Modellparameter Stauwasserabfluss (alle Versuchsvarianten) Gauchsberg model parameters lateral drain (all plots)	141
Tabelle 78:	Gauchsberg Fichtenaltbestand (Parzellen 5103, 5104), Modellparameter Vegetation Gauchsberg Norway spruce mature stand (parcels 5103, 5104), model parameters vegetation	141
Tabelle 79:	Gauchsberg Fichtenaltbestand (Parzellen 5103, 5104), gemessene und simulierte Interzeption Gauchsberg Norway spruce mature stand (parcels 5103, 5104), measured and simulated interception	142
Tabelle 80:	Gauchsberg Fichtenaltbestand (Parzellen 5103, 5104), Bilanzkomponenten des Wasserhaushalts Gauchsberg Norway spruce mature stand (parcels 5103, 5104), components of the water balance	144
Tabelle 81:	Gauchsberg Eichenaltbestand (Parzellen 5503, 5504), Datengrundlage Bodenhydrologie Gauchsberg oak mature stand (parcels 5503, 5504), soil hydrologic data	146
Tabelle 82:	Gauchsberg Eichenaltbestand (Parzellen 5503, 5504), Modellparameter Boden Gauchsberg oak mature stand (parcels 5503, 5504), model parameters soil	146
Tabelle 83:	Gauchsberg Eichenaltbestand (Parzellen 5503, 5504), Modellparameter Vegetation Gauchsberg oak mature stand (parcels 5503, 5504), model parameters vegetation	146

Tabelle 84:	Gauchsberg Eichenaltbestand (Parzellen 5503, 5504), gemessene und simulierte Interzeption Gauchsberg oak mature stand (parcels 5503, 5504), measured and simulated interception	147
Tabelle 85:	Gauchsberg Eichenaltbestand (Parzellen 5503, 5504), Bilanzkomponenten des Wasserhaushalts Gauchsberg oak mature stand (parcels 5503, 5504), components of the water balance	149
Tabelle 86:	Gauchsberg Null-/Freifläche (Parzellen 5003, 5004), Datengrundlage Bodenhydrologie Gauchsberg open area (parcels 5003, 5004), soil hydrologic data	152
Tabelle 87:	Gauchsberg Null-Freifläche (Parzelle 5003), Modellparameter Boden Gauchsberg open area (parcel 5003), model parameters soil	152
Tabelle 88:	Gauchsberg Null-Freifläche (Parzelle 5004), Modellparameter Boden Gauchsberg open area (parcel 5004), model parameters soil	152
Tabelle 89:	Gauchsberg Null-/Freifläche (Parzellen 5003, 5004), Modellparameter Vegetation Gauchsberg open area (parcels 5003, 5004), model parameters vegetation	152
Tabelle 90:	Gauchsberg Null-/Freifläche (Parzelle 5003), Bilanzkomponenten des Wasserhaushalts Gauchsberg open area (parcel 5003), components of the water balance	155
Tabelle 91:	Gauchsberg Null-Freifläche (Parzelle 5004), Bilanzkomponenten des Wasserhaushalts Gauchsberg open area (parcel 5004), components of the water balance	157
Tabelle 92:	Gauchsberg Sukzessionsvariante (Parzellen 5203, 5204), Datengrundlage Bodenhydrologie Gauchsberg succession (parcels 5203, 5204), soil hydrologic data	159
Tabelle 93:	Gauchsberg Sukzessionsvariante (Parzelle 5203), Modellparameter Boden Gauchsberg succession (parcel 5203), model parameter soil	159
Tabelle 94:	Gauchsberg Sukzessionsvariante (Parzelle 5204), Modellparameter Boden Gauchsberg succession (parcel 5204), model parameter soil	159
Tabelle 95:	Gauchsberg Sukzessionsvariante (Parzellen 5203, 5204), Modellparameter Vegetation Gauchsberg succession (parcels 5203, 5204), model parameters vegetation	159
Tabelle 96:	Gauchsberg Sukzessionsvariante (Parzelle 5203), Bilanzkomponenten des Wasserhaushalts Gauchsberg succession (parcel 5203), components of the water balance	162
Tabelle 97:	Gauchsberg Sukzessionsvariante (Parzelle 5204), Bilanzkomponenten des Wasserhaushalts Gauchsberg succession (parcel 5204), components of the water balance	164
Tabelle 98:	Gauchsberg Traubeneiche (Parzellen 5303, 5304), Datengrundlage Bodenhydrologie Gauchsberg Sessile oak (parcels 5303, 5304), soil hydrologic data	166
Tabelle 99:	Gauchsberg Traubeneiche (Parzelle 5303), Modellparameter Boden Gauchsberg Sessile oak (parcel 5303), model parameters soil	166
Tabelle 100:	Gauchsberg Traubeneiche (Parzelle 5304), Modellparameter Boden Gauchsberg Sessile oak (parcel 5304), model parameters soil	166
Tabelle 101:	Gauchsberg Traubeneiche (Parzellen 5303, 5304), Modellparameter Vegetation Gauchsberg Sessile oak (parcels 5303, 5304), model parameters vegetation	166
Tabelle 102:	Gauchsberg Traubeneiche (Parzelle 5303), Bilanzkomponenten des Wasserhaushalts Gauchsberg Sessile oak (parcel 5303), components of the water balance	169
Tabelle 103:	Gauchsberg Traubeneiche (Parzelle 5304), Bilanzkomponenten des Wasserhaushalts Gauchsberg Sessile oak (parcel 5304), components of the water balance	171
Tabelle 104:	Gauchsberg Birke (Parzellen 5403, 5404), Datengrundlage Bodenhydrologie Gauchsberg Birch (parcels 5403, 5404), soil hydrologic data	173
Tabelle 105:	Gauchsberg Birke (Parzelle 5403), Modellparameter Boden Gauchsberg Birch (parcel 5403), model parameters soil	173
Tabelle 106:	Gauchsberg Birke (Parzelle 5404), Modellparameter Boden Gauchsberg Birch (parcel 5404), model parameters soil	173
Tabelle 107:	Gauchsberg Birke (Parzellen 5403, 5404), Modellparameter Vegetation Gauchsberg Birch (parcels 5403, 5404), model parameters vegetation	173
Tabelle 108:	Gauchsberg Birke (Parzelle 5403), Bilanzkomponenten des Wasserhaushalts Gauchsberg Birch (parcel 5403), components of the water balance	176
Tabelle 109:	Gauchsberg Birke (Parzelle 5404), Bilanzkomponenten des Wasserhaushalts Gauchsberg Birch (parcel 5404), components of the water balance	178
Tabelle 110:	Kirchberg Datengrundlage Meteorologie Kirchberg data basis meteorology	180
Tabelle 111:	Kirchberg meteorologische Daten <i>Kirchberg meteorologic data</i>	181

Tabelle 112:	Kirchberg Fichtenaltbestand (Parzellen 5103, 5104), Datengrundlage Bodenhydrologie Kirchberg Norway spruce mature stand (parcels 5103, 5104), soil hydrologic data	182
Tabelle 113:	Kirchberg Fichtenaltbestand (Parzellen 5103, 5104), Modellparameter Boden Kirchberg Norway spruce mature stand (parcels 5103, 5104), model parameters soil	182
Tabelle 114:	Kirchberg Modellparameter Stauwasserabfluss (alle Versuchsvarianten) Kirchberg model parameters lateral drain	182
Tabelle 115:	Kirchberg Fichtenaltbestand (Parzellen 5103, 5104), Modellparameter Vegetation Kirchberg Norway spruce mature stand (parcels 5103, 5104), model parameters vegetation	182
Tabelle 116:	Kirchberg Fichtenaltbestand (Parzellen 5103, 5104), gemessene und simulierte Interzeption Kirchberg Norway spruce mature stand (parcels 5103, 5104), measured and simulated interception	184
Tabelle 117:	Kirchberg Fichtenaltbestand (Parzellen 5103, 5104), Bilanzkomponenten des Wasserhaushalts Kirchberg Norway spruce mature stand (parcels 5103, 5104), components of the water balance	187
Tabelle 118:	Kirchberg Eichenaltbestand (Parzellen 5503, 5504), Datengrundlage Bodenhydrologie Kirchberg oak mature stand (parcels 5503, 5504), soil hydrologic data	190
Tabelle 119:	Kirchberg Eichenaltbestand (Parzellen 5503, 5504), Modellparameter Boden Kirchberg oak mature stand (parcels 5503, 5504), model parameters soil	190
Tabelle 120:	Kirchberg Eichenaltbestand (Parzellen 5503, 5504), Modellparameter Vegetation Kirchberg oak mature stand (parcels 5503, 5504), model parameters vegetation	190
Tabelle 121:	Kirchberg Eichenaltbestand (Parzellen 5503, 5504), gemessene und simulierte Interzeption Kirchberg oak mature stand (parcels 5503, 5504), measured and simulated interception	191
Tabelle 122:	Kirchberg Eichenaltbestand (Parzellen 5503, 5504), Bilanzkomponenten des Wasserhaushalts Kirchberg oak mature stand (parcels 5503, 5504), components of the water balance	193
Tabelle 123:	Kirchberg Null-/Freifläche (Parzellen 5003, 5004), Datengrundlage Bodenhydrologie Kirchberg open area (parcels 5003, 5004), soil hydrologic data	196
Tabelle 124:	Kirchberg Null-/Freifläche (Parzellen 5003, 5004), Modellparameter Boden Kirchberg open area (parcels 5003, 5004), model parameters soil	196
Tabelle 125:	Kirchberg Null-/Freifläche (Parzellen 5003, 5004), Modellparameter Vegetation Kirchberg open area (parcels 5003, 5004), model parameters vegetation	196
Tabelle 126:	Kirchberg Null-/Freifläche (Parzellen 5003, 5004), Bilanzkomponenten des Wasserhaushalts Kirchberg open area (parcels 5003, 5004), components of the water balance	199
Tabelle 127:	Kirchberg Sukzessionsvariante (Parzellen 5203, 5204), Datengrundlage Bodenhydrologie Kirchberg succession (parcels 5203, 5204), soil hydrologic data	202
Tabelle 128:	Kirchberg Sukzessionsvariante (Parzelle 5203), Modellparameter Boden Kirchberg succession (parcel 5203), model parameters soil	202
Tabelle 129:	Kirchberg Sukzessionsvariante (Parzelle 5204), Modellparameter Boden Kirchberg succession (parcel 5204), model parameters soil	202
Tabelle 130:	Kirchberg Sukzessionsvariante (Parzellen 5203, 5204), Modellparameter Vegetation Kirchberg succession (parcels 5203, 5204), model parameters vegetation	202
Tabelle 131:	Kirchberg Sukzessionsvariante (Parzelle 5203), Bilanzkomponenten des Wasserhaushalts Kirchberg succession (parcel 5203), components of the water balance	207
Tabelle 132:	Kirchberg Sukzessionsvariante (Parzelle 5204), Bilanzkomponenten des Wasserhaushalts Kirchberg succession (parcel 5204), components of the water balance	209
Tabelle 133:	Kirchberg Stieleiche (Parzellen 5303, 5304), Datengrundlage Bodenhydrologie Kirchberg oak (parcels 5303, 5304), soil hydrologic data	212
Tabelle 134:	Kirchberg Stieleiche (Parzellen 5303, 5304), Modellparameter Boden Kirchberg oak (parcels 5303, 5304), model parameters soil	212
Tabelle 135:	Kirchberg Stieleiche (Parzellen 5303, 5304), Modellparameter Vegetation Kirchberg oak (parcels 5303, 5304), model parameters vegetation	212
Tabelle 136:	Kirchberg Stieleiche (Parzellen 5303, 5304), Bilanzkomponenten des Wasserhaushalts Kirchberg oak (parcels 5303, 5304), components of the water balance	215
Tabelle 137:	Kirchberg Roterle (Parzellen 5403, 5404), Datengrundlage Bodenhydrologie Kirchberg Red alder (parcels 5403, 5404), soil hydrologic data	217
Tabelle 138:	Kirchberg Roterle (Parzellen 5403, 5404), Modellparameter Boden Kirchberg Red alder (parcels 5403, 5404), model parameter soil	218
Tabelle 139:	Kirchberg Roterle (Parzellen 5403, 5404), Modellparameter Vegetation Kirchberg Red alder (parcels 5403, 5404), model parameters vegetation	218

Tabelle 140:	Kirchberg Roterle (Parzellen 5403, 5404), Bilanzkomponenten des Wasserhaushalts Kirchberg Red alder (parcels 5403, 5404), components of the water balance	221
Tabelle 141:	Kisselbach III Kahllagenversuch, Datengrundlage Bodenhydrologie Kisselbach III clear cutting experiment, soil hydrologic data	226
Tabelle 142:	Kisselbach III Kahllagenversuch, Modellparameter Boden Kisselbach III clear cutting experiment, model parameters soil	226
Tabelle 143:	Kisselbach III Kahllagenversuch, Modellparameter Stauwasserabfluss Kisselbach III clear cutting experiment, model parameters lateral drain	226
Tabelle 144:	Kisselbach III Kahllagenversuch, Modellparameter Vegetation Kisselbach III clear cutting experiment, model parameters vegetation	227
Tabelle 145:	Kisselbach III Kahllagenversuch, gemessene und simulierte Interzeption Kisselbach III clear cutting experiment, measured and simulated interception	228
Tabelle 146:	Kisselbach III Kahllagenversuch, Bilanzkomponenten des Wasserhaushalts Kisselbach III clear cutting experiment, components of the water balance	231
Tabelle 147:	Kisselbach IX Kahllagenversuch, Datengrundlage Bodenhydrologie Kisselbach IX clear cutting experiment, soil hydrologic data	234
Tabelle 148:	Kisselbach IX Kahllagenversuch, Modellparameter Boden Kisselbach IX clear cutting experiment, model parameters soil	234
Tabelle 149:	Kisselbach IX Kahllagenversuch, Modellparameter Stauwasserabfluss Kisselbach IX clear cutting experiment, model parameters lateral drain	235
Tabelle 150:	Kisselbach IX Kahllagenversuch, Modellparameter Vegetation Kisselbach IX clear cutting experiment, model parameters vegetation	235
Tabelle 151:	Kisselbach IX Kahllagenversuch, gemessene und simulierte Interzeption des Oberstandes Kisselbach IX clear cutting experiment, measured and simulated interception of the canopy level	237
Tabelle 152:	Kisselbach IX Kahllagenversuch, Bilanzkomponenten des Wasserhaushalts Kisselbach IX clear cutting experiment, components of the water balance	239
Tabelle 153:	Laubach VIII, Datengrundlage Bodenhydrologie Laubach VIII, soil hydrologic data	241
Tabelle 154:	Laubach VIII, Modellparameter Boden Laubach VIII, model parameters soil	241
Tabelle 155:	Laubach VIII, Modellparameter Stauwasserabfluss Laubach VIII, model parameters lateral drain	242
Tabelle 156:	Laubach VIII, Modellparameter Vegetation Laubach VIII, model parameters vegetation	242
Tabelle 157:	Laubach VIII, gemessene und simulierte Interzeption des Oberstandes Laubach VIII, measured and simulated interception of the canopy level	244
Tabelle 158:	Laubach VIII, Bilanzkomponenten des Wasserhaushalts Laubach VIII, components of the water balance	247
Tabelle 159:	Bilanzkomponenten des Wasserhaushalts Components of the water balance	252
Tabelle 160:	Level II-Standorte, Jahre mit Trockenstress und qualitative Relevanz von Sauerstoffmangel Level II-plots, years with dry soil conditions and relevance of oxygen stress	256

Bisher sind folgende Mitteilungen aus der Forschungsanstalt für Waldökologie und Forstwirtschaft Rheinland-Pfalz erschienen:

71/2012	Karl, Block, Schüler, Schultze, Scherzer Wasserhaushaltsuntersuchungen im Rahmen des Forstlichen Umwelt- monitorings und bei waldbaulichen Versuchen in Rheinland-Pfalz ISSN 1610-7705 nur als download http://www.fawf.wald-rlp.de/index.php?id=2601	
70/2012	Block und Gauer (Hrsg.) Waldbodenzustand in Rheinland-Pfalz ISSN 1610-7705	€ 16,
69/2011	Maurer und Haase (Hrsg.): Holzproduktion auf forstgenetischer Grundlage. Tagungsbericht 28. Internationale Tagung ARGE Forstgenetik und Forstpflan- zenzüchtung, 46. November 2009 in Treis-Karden (Mosel)	€ 18,
68/2009	Engels, Jochum, Krug und Seegmüller (Hrsg.): Käferschäden im Buchenholz: Einbußen und Verwendungsoptionen ISSN 1610-7705	€ 10,
67/2009	Phan Hoang Dong (Hrsg.): Zum Anbau und Wachstum von Vogelkirsche und Birke ISSN 0931-9662	€ 10,
66/2008	Werner D. Maurer und Bolko Haase (Hrsg.): Walnuss-Tagung 2008 ISSN 1610-7705	€ 10,
65/2008	Block (Hrsg.): Forstliche Forschung Grundlage für eine zukunftsfähige Forstwirtschaft ISSN 1610-7705	€ 10,
64/2007	Schüler, Gellweiler und Seeling (Hrsg.): Dezentraler Wasserrückhalt in der Landschaft durch vorbeugende Maßnah- men der Waldwirtschaft, der Landwirtschaft und im Siedlungswesen ISSN 1610-7705	€ 15,
63/2007	Dong (Hrsg.): Eiche im Pfälzerwald ISSN 0931-9662	€ 10,
62/2007	Bücking, Moshammer und Roeder: Wertholzproduktion bei der Fichte mittels kronenspannungsarm gewachsener Z-Bäume ISSN 0931-9622	€ 15,
61/2007	Jahresbericht 2006 ISSN 1610-7705 ISSN 1610-7713	

60/2006	Block und Schüler (Hrsg.): Stickstoffbelastung der rheinland-pfälzischen Wälder; Erschließung von Sekundärrohstoffen als Puffersubstanzen für Bodenmaßnahmen im Wald ISSN 1610-7705	€ 10,
59/2006	Petercord und Block (Hrsg.): Strategien zur Sicherung von Buchenwäldern ISSN 0931-9662	€ 10,
58/2006	Jahresbericht 2005 ISSN 0931-9662 ISSN 0936-6067	
57/2005	Seegmüller (Hrsg.): Die Forst-, Holz- und Papierwirtschaft in Rheinland-Pfalz ISSN 0931-9662	€ 10,
56/2005	Jahresbericht 2004 ISSN 0931-9662 ISSN 0936-6067	
55/2005	Dong (Hrsg.): Zum Aufbau und Wachstum der Douglasie ISSN 0931-9662	€ 10,
54/2004	Dong (Hrsg.): Kiefer im Pfälzerwald ISSN 0931-9662	€ 10, vergriffen
53/2004	Jahresbericht 2003 ISSN 0931-9662 ISSN 0936-6067	
52/2004	Maurer (Hrsg.): Zwei Jahrzehnte Genressourcen-Forschung in Rheinland-Pfalz ISSN 1610-7705	€ 15, (vergriffen)
51/2003	Jahresbericht 2002 ISSN 0931-9662 ISSN 0936-6067	
50/2003	Maurer (Hrsg.): Ökologie und Waldbau der Weißtanne – Tagungsbericht zum 10. Internatio- nalen IUFRO Tannensymposium am 16-20. September 2002 an der FAWF in Trippstadt ISSN 1610-7705	€ 15,
49/2002	Maurer (Hrsg.): Vom genetischen Fingerabdruck zum gesicherten Vermehrungsgut: Untersuchungen zur Erhaltung und nachhaltigen Nutzung forstlicher Genressourcen in Rheinland-Pfalz ISSN 1610-7705	€ 15, (vergriffen)
48/2002	Jahresbericht 2001 ISSN 0931-9662 ISSN 0936-6067	
47/2001	Jahresbericht 2000 ISSN 0931-9662 ISSN 0936-6067	

46/1999	Jahresbericht 1999 ISSN 0931-9662 ISSN 0936-6067		
45/1999	Delb und Block: Untersuchungen zur Schwammspinnerkalamität von 1992–1994 in Rheinland-Pfalz ISSN 0931-9662	€13	,
44/1998	Jahresbericht 1998 SSN 0931-9662 ISSN 0936-6067		
43/1997	Jahresbericht 1997 ISSN 0931-9662 ISSN 0936-6067		
42/1997	Bücking, Eisenbarth und Jochum: Untersuchungen zur Lebendlagerung von Sturmwurfholz der Baumarten Fichte, Kiefer, Douglasie und Eiche ISSN 0931-9662	€10	,
41/1997	Maurer und Tabel (Hrsg.): Stand der Ursachenforschung zu Douglasienschäden – derzeitige Empfehlun- gen für die Praxis ISSN 0931-9662	€10	,
40/1997	Schröck (Hrsg.): Untersuchungen an Waldökosystemdauerbeobachtungsflächen in Rhein- land-Pfalz – Tagungsbericht zum Kolloquium am 04. Juni 1996 in Trippstadt - ISSN 0931-9662	€ 8	,
39/1997	Jahresbericht 1996 ISSN 0931-9662 ISSN 0936-6067		
38/1996	Balcar (Hrsg.): Naturwaldreservate in Rheinland-Pfalz: Erste Ergebnisse aus dem Natur- waldreservat Rotenberghang im Forstamt Landstuhl ISSN 0931-9662	€ 13	,
37/1996	Hunke: Differenzierte Absatzgestaltung im Forstbetrieb - Ein Beitrag zu Strategie und Steuerung der Rundholzvermarktung ISSN 0931-9662	€ 10	,
36/1996	Jahresbericht 1995 ISSN 0931-9662 ISSN 0936-6067		
35/1995	Block, Bopp, Butz-Braun und Wunn: Sensitivität rheinland-pfälzischer Waldböden gegenüber Bodendegradation durch Luftschadstoffbelastung ISSN 0931-9662	€ 8	,
34/1995	Maurer und Tabel (Hrsg.): Genetik und Waldbau unter besonderer Berücksichtigung der heimischen Eichenarten ISSN 0931-9662	€ 8	,

33/1995	Eisenbarth: Schnittholzeigenschaften bei Lebendlagerung von Rotbuche (<i>Fagus sylvatica</i> L.) aus Wintersturmwurf 1990 in Abhängigkeit von Lagerart und Lagerdauer ISSN 0931-9662	€	6,
32/1995	Autorenkollektiv: Untersuchungen an Waldökosystem-Dauerbeobachtungsflächen in Rhein- land-Pfalz ISSN 0931-9662	€	6,
31/1995	Jahresbericht 1994 ISSN 0931-9662 ISSN 0936-6067		
30/1994	Schüler: Ergebnisse forstmeteorologischer Messungen für den Zeitraum 1988 bis 1992 ISSN 0931-9662	€	6,
29/1994	Fischer: Untersuchung der Qualitätseigenschaften, insbesondere der Festigkeit von Douglasien-Schnittholz (Pseudotsuga Menziesii (Mirb.)Franco), erzeugt aus nicht-wertgeästeten Stämmen ISSN 0931-9662	€	6,
28/1994	Schröck: Kronenzustand auf Dauerbeobachtungsflächen in Rheinland-Pfalz - Entwicklung und Einflußfaktoren - ISSN 0931-9662	€	6,
27/1994	Oesten und Roeder: Zur Wertschätzung der Infrastrukturleistungen des Pfälzerwaldes ISSN 0931-9662	€	6,
26/1994	Jahresbericht 1993 ISSN 0931-9662 ISSN 0936-6067		
25/1994	Wierling: Zur Ausweisung von Wasserschutzgebieten und den Konsequenzen für die Forstwirtschaft am Beispiel des Pfälzerwaldes ISSN 0931-9662	€	6,
24/1993	Block: Verteilung und Verlagerung von Radiocäsium in zwei Waldökosystemen in Rheinland-Pfalz insbesondere nach Kalk- und Kaliumdüngungen ISSN 0931-9662	€	6,
23/1993	Heidingsfeld: Neue Konzepte zum Luftbildeinsatz für großräumig permanente Waldzu- standserhebungen und zur bestandesbezogenen Kartierung flächenhafter Waldschäden ISSN 0931-9662	€`	10,
22/1993	Jahresbericht 1992 ISSN 0931-9662 ISSN 0936-6067		
21/1992	Autorenkollektiv: Der vergleichende Kompensationsversuch mit verschiedenen Puffersubstan- zen zur Minderung der Auswirkungen von Luftschadstoffeinträgen in Wald- ökosystemen - Zwischenergebnisse aus den Versuchsjahren 1988 - 1991 - ISSN 0931-9662	€ ver	6, griffen
---------	---	----------	---------------
20/1992	Jahresbericht 1991 ISSN 0931-9662 ISSN 0936-6067		
19/1991	Autorenkollektiv: Untersuchungen zum Zusammenhang zwischen Sturm- und Immissions- schäden im Vorderen Hunsrück - "SIMS" - ISSN 0931-9662	€	6,
18/1991	Schüler, Butz-Braun und Schöne: Versuche zum Bodenschutz und zur Düngung von Waldbeständen ISSN 0931-9662	€	6,
17/1991	Block, Bopp, Gatti, Heidingsfeld und Zoth: Waldschäden, Nähr- und Schadstoffgehalte in Nadeln und Waldböden in Rheinland-Pfalz ISSN 0931-9662	€	6,
16/1991	Block, Bockholt, Borchert, Fingerhut, Heidingsfeld und Schröck: Immissions-, Wirkungs- und Zustandsuntersuchungen in Waldgebieten von Rheinland-Pfalz - Sondermeßprogramm Wald, Ergebnisse 1983-1989 ISSN 0931-9662	€	6,
15/1991	Jahresbericht 1990 ISSN 0931-9662 ISSN 0936-6067		
14/1990	Block: Ergebnisse der Stoffdepositionsmessungen in rheinland-pfälzischen Waldge- bieten 1984 - 1989 ISSN 0931-9662	€ vei	6, griffen
13/1990	Schüler: Der kombinierte Durchforstungs- und Düngungsversuch Kastellaun - ange- legt 1959 - heute noch aktuell ? ISSN 0931-9662	€	6,
12/1990	Jahresbericht 1989 ISSN 0931-9662 ISSN 0936-6067		
11/1989	Block, Deinet, Heupel, Roeder und Wunn: Empirische, betriebswirtschaftliche und mathematische Untersuchungen zur Wipfelköpfung der Fichte ISSN 0931-9662	€	6,
10/1989	Heidingsfeld: Verfahren zur luftbildgestützten Intensiv-Waldschadenserhebung in Rhein- land-Pfalz ISSN 0931-9662	€1	3,

9/1989	Jahresbericht 1988 ISSN 0936-6067	
8/1988	Gerecke: Zum Wachstumsgang von Buchen in der Nordpfalz ISSN 0931-9662	€ 13,
7/1988	Beutel und Block: Terrestrische Parkgehölzschadenserhebung (TPGE 1987) ISSN 0931-9662	€ 6,
6/1988	Jahresbericht 1987 ISSN 0931-9662	
5/1988	Die Forstliche Versuchsanstalt Rheinland-Pfalz im Dienste von Wald und Forstwirtschaft - Reden anläßlich der Übergabe des Schlosses Trippstadt als Dienstsitz am 10.04.1987 - ISSN 0931-9662	€ 6,
4/1987	Beutel und Block: Terrestrische Feldgehölzschadenserhebung (TFGE 1986) ISSN 0931-9662	€ 6, vergriffen
3/1987	Block, Fraude und Heidingsfeld:Sondermeßprogramm Wald (SMW) ISSN 0931-9662	€ 6,
2/1987	Block und Stelzer: Radioökologische Untersuchungen in Waldbeständen ISSN 0931-9662	€ 6,
1/1987	Jahresbericht 1984-1986 ISSN 0931-9662	vergriffen

Das Waldmonitoring in Rheinland-Pfalz ist eingebunden in das deutsche und europäische Forstliche Umweltmonitoring.

Die rheinland-pfälzischen Level-II-Flächen wurden bis 2006 im Rahmen des EU-Forest Focus–Programms und von 2009 bis Juni 2011 im Rahmen des LIFE+-FutMon-Projekts (www.futmon.org) von der Europäischen Union finanziell unterstützt.

Rheinland Pfalz

MINISTERIUM FÜR UMWELT, LANDWIRTSCHAFT, ERNÄHRUNG, WEINBAU UND FORSTEN

Kaiser-Friedrich-Strasse 1 55116 Mainz

www.mulewf.de www.wald-rlp.de